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Wait a minute…How certain is 
the model about its prediction? 
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set of labels 



example: 95% confident that the patient has 
pneumonia, tuberculosis, or asthma.
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Wait a minute…How certain is 
the model about its prediction? 

!(") = $̂ ℙ($* ∈ '(")) ≥ 95 %+



This talk is about how to know  
what your model doesn’t know.
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I.  What is Uncertainty?
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Two Types of Uncertainty 
⊗ Aleatoric 

• fundamental, related to Bayes error rate 
• possibly reduced by collecting more features 

⊗ Epistemic 
• due to lack of experience / observations 
• always reduced by collecting more data points
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Examples from Autonomous Driving
train in urban environment

high aleatoric: 
avoiding a head-on collision

high epistemic: 
driving in the 

mountains



In practice, distinguishing aleatoric vs epistemic 
uncertainty is incredibly difficult.   

For the rest of this talk, I’ll ignore the distinction: 
uncertainty is ‘high’ when either types are ‘high.’
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II.  Modeling Paradigms
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fixed, unknown distribution generates the data:
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Frequentist Learning: Maximum Likelihood

̂θ =
,

∑
+=-

log . ($+ |"+, θ)

maximize the log-likelihood of parameters:

argmax
θ ∈ Θ

(for classification, equivalent to cross-entropy loss) 



. ($̂ |"; ̂θ) ≈ ℙ ($ = $̂ |")

under (near) perfect learning, can quantify 
uncertainty simply by… 

model probability reflects confidence:

Frequentist Learning: Ideal UQ
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well-motivated with large data sets, but 
models are big and data is often scarce!

Frequentist Learning: Limitations

%
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f s
am

pl
es

softmax outputs
[Guo et al., ICML 2017]
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. (θ |*) =
. (θ) ∏,

+=- . ($+ |"+, θ)
.(*)

∫θ
. (θ)

,

∏
+=-

. ($+ |"+, θ) 2θ

Bayesian Learning: Posterior Distribution

marginal likelihood



Bayesian Learning: Ideal UQ

for new data point "̃

. ($̃ | "̃, *) = ∫θ
. ($̃ | "̃, θ) . (θ |*) 2θ

integrate out posterior distribution:

posterior predictive distribution



Bayesian Learning: Ideal UQ

under (near) perfect learning, use posterior 
predictive distribution for ground-truth probabilities

. ($̃ | "̃, *) ≈ ℙ($ = $̃ |")



Bayesian Learning: Ideal UQ
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predictive distribution for ground-truth probabilities



integrating over the parameters is difficult 
to even approximate for neural networks.

Bayesian Learning: Limitations

posterior predictive distribution

marginal likelihood



Bayesianism vs Frequentism: Summary

⊗ Frequentism 
• data-driven, easy computation 
• misled by sampling noise if dataset is not large 

⊗ Bayesianism 
• prior distribution ‘jump starts’ learning 
• computation is very, very costly
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III.  Uncertainty Quantification         
in Practice
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Bootstrap Aggregation
recall that frequentism assumes randomness 
comes from the data sampling process.

if we could see additional data sets, we could 
know more about the sampling noise.

{*3}4
3=- ∼ ℙ ($ |")



63

Bootstrap Aggregation

Bootstrapping synthesizes additional data sets by 
resampling from the training set.

{*3}4
3=- ∼ -

,
,

∑
+=-

δ [("+, $+)]
sampling with replacement
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Sample-then-Optimize Ensemble

recall that Bayesianism assumes randomness comes 
from the prior.

we perform a bagging-like procedure, but using 
samples from the prior to initialize training.

{θ̄3}4
3=- ∼ .(θ)



max likelihood
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Sample-then-Optimize Ensemble

[Matthews et al., 2017] show the procedure  
(very nearly) recovers the posterior in linear models.





Sample-then-Optimize Ensemble

surprisingly comparable to high-fidelity Bayesian 
inference (performed on 512 TPUs).

[Izmailov et al., ICML 2021]



max likelihood

Bayesian vs Frequentist Ensembles
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Conformal Prediction
The aim of conformal prediction is to construct 
uncertainty sets with guaranteed validity.

ℙ ($*,+- ∈ '(",+-)) ≥ - − α
[Angelopoulos & Bates, 2022]
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The aim of conformal prediction is to construct 
uncertainty sets with guaranteed validity.

Conformal Prediction



instead of using raw outputs as the confidence 
level, use held-out data to adapt the threshold

theoretical guarantee stems from the assumption 
of exchangeability:

ℙ($-, $6, $7) = ℙ($π(-), $π(6), $π(7))
for any permutation π

Conformal Prediction
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class #1class #2

.($ = 2 |") .($ = 1 |")

iii) compute the (1-α)-quantile of the scores across 
the held-out set.

+8(") =
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iv) compute the (1-α)-quantile of the scores.

scores, s(x)
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Conformal Prediction: Test-Time
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i) rank classes by model probabilities.
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'(") = { }
$ = 7 $ = 6

true label is guaranteed to be in this set (1-α)% 
of the time, on average over the test set.

Conformal Prediction: Test-Time
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Variational Inference
construct a tractable approximation to the 
Bayesian posterior distribution.

approximation
true posterior 

. (θ |*)
9 (θ)
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Laplace Approximation

. ($̃ | "̃, *) ≈ ∫θ
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compute predictive distribution using 
posterior approximation

might need to approximate integral with sampling
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Sample-then-Optimize Laplace Approximation

.(θ)

θ̄- ̂θ-

̂θ4

Bayesian 
prior

…
..

sample
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mple

…
..

optimize

θ̄4
optimize

. (θ |*) ≈
-
4
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∑
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⊗ Frequentism 

• bootstrap aggregation (bagging) 
• conformal prediction 

⊗ Bayesianism 
• sample-then-optimize ensembling 
• variational inference w/ Laplace approximation



⊗ Frequentism 
• need to do more than maximum likelihood  
• extra data: synthesized or from held-out set 

⊗ Bayesianism 
• need to do less for the sake of computation 
• construct approximations localized to areas of 

high posterior density.
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Practical Methods for UQ: Summary
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Hybrid Methods for UQ
can mix Bayesian and frequentist procedures!

⊗ data augmentation: sampling new data by applying 
bespoke transformations to original dataset. 

⊗ apply conformal prediction to posterior predictive 
distribution: frequentist correction to a Bayesian model



IV.  Evaluating  
Uncertainty Quantification

124



125

⊗ Calibration: can the model forecast its own performance? 

⊗ Coverage: does the model meet the given error level?

Evaluating UQ



Calibration
does the model confidence reflect its 
empirical accuracy?

reliability 
diagram
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Calibration
does the model confidence reflect its 
empirical accuracy?

perfect 
calibration



Calibration
does the model confidence reflect its 
empirical accuracy?
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Calibration
does the model confidence reflect its 
empirical accuracy?

over-confident



Calibration: Over-Confidence
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[Guo et al., ICML 2017]
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Coverage
on what fraction of the data do the confidence 
/ credible sets cover the true label?

∑:
@=- A [$*@ ∈ '("@)]

: ≥ (1 − α)
?



Coverage

average size of the set is measured as well, 
since we want sets to be efficient

on what fraction of the data do the confidence 
/ credible sets cover the true label?

∑:
@=- A [$*@ ∈ '("@)]

: ≥ (1 − α)
?
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⊗ Calibration: can the model forecast its own performance? 

⊗ Coverage: does the model meet the given error level?

Evaluating UQ



V.  Summary
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⊗ Practical Methods 
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⊗ Evaluation 
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• coverage: does the model meet the tolerated level of error?  
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⊗ better methods for Bayesian computations 

⊗ guarantees in the era of deep learning 

⊗ setting more informative Bayesian priors 

⊗ quantifying uncertainty in structured, multi-step, 
or otherwise correlated tasks.

Open Problems
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Thank You!   Questions?


