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Diagonal Matrix of 
Random Variables

hl = fl(hl−1ΛlWl) λl,i,i ∼ p(λ)

Dropout Regularization

Implementation as multiplicative noise:

⊗ Dropout corresponds to p(λ) being Bernoulli.
⊗ Gaussian, beta, and uniform noise also work well.
⊗ Optimization objective:

#λ [log p (y |X, {Wl}L+1
l=1 , {Λl}L+1

l=1 )]



        serves as a variational approximation 
to the posterior
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Bayesian Interpretation of Dropout

⊗ Gal & Ghahramani [2016] argued that dropout can be 
interpreted as variational Bayesian inference.

⊗ Obtain predictive uncertainty by averaging over    
noise samples.

⊗ However, p(λ)—their posterior approximation—is 
fixed, does not depend on data. 

⊗ Subsequent work has attempted to fix this by 
optimizing the noise distribution. [Maeda, 2014; Kingma et al., 2015; 
Molchanov et al., 2017; Gal et al., 2017]
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“…[dropout] is effectively a Monte 
Carlo integration over a Gaussian 
process posterior approximation 
(Gal & Ghahramani, 2016).”

~  Hon et al. (2018)
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⊗ Revise dropout’s Bayesian interpretation: should 
be compatible with any inference procedure (not 
restricted to variational inference). 

⊗ Why drop hidden units?: dropping weights 
(‘DropConnect’) was explored by Wan et al. [2013] 
but has not found wide use. 

⊗ Principles for extension to new architectures?  
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⊗ Consider a scalar-version of the dropout / mult. noise 
equation: 

⊗ Assume a Gaussian prior on the weight:

⊗ What is the distribution of the noise-weight product?
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hl = fl(hl−1λlwl), λl ∼ p(λ)

wl ∼ N(0, σ2
0)

hl = fl(hl−1λlwl)
Gaussian scale mixture! (expanded param.)

[Beale & Mallows, 1959]

Dropout as a Bayesian Prior



⊗ Gaussian scale mixtures can be reparameterized into the 
following hierarchical form:

⊗ Noise moves from likelihood and becomes a scale

⊗ Expanded parameterization has been previously used for 
Bayesian variable selection [Kuo & Mallik, 1998]:
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⊗ Reparameterization translates between noise 
distributions and marginal priors:

38

Dropout as a Bayesian Prior

~
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“…[dropout] is effectively a Monte 
Carlo integration over a Gaussian 
process posterior approximation 
(Gal & Ghahramani, 2016).”

~  Hon et al. (2018)

net’s effective depth and width.  We fit       
the model wvariational EM and to         
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λl,i,i ∼ p(λ)
Uses Bayesian shrinkage to 
control the effective number of 
hidden units.

Dropout as Structured Shrinkage

i  indexes 
rows 

~
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⊗ Reparameterized form:
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λl,i,i ∼ p(λ)
Uses Bayesian shrinkage to 
control the effective number of 
hidden units.

Same structure as the automatic 
relevance determination (ARD) 
prior proposed by D. MacKay and 
R. Neal for Bayesian NNs [1994].

Dropout as Structured Shrinkage

i  indexes 
rows 

~
hl = fl(hl−1W̃l)

w̃l,i,j ∼ N(0,λ2
l,i,iσ2

0)



Previous work by Wan et al. [2013] proposed dropconnect, 
which drops weights independently.  Motivated by “co-
adaptation” explanation of Hinton et al. [2012]
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What about DropConnect?

W
WEIGHT MATRIX

Λ
NOISE MATRIX
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dl

dl-1
dl

Has not been as successful because ARD 
structure is broken—no scale sharing.
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Now what about other architectural modifications?  
Say, skip connections?

Residual Networks and Skip Connections

X E[y|x]h1 h2 h3+

Skip connection

hl = fl(hl−1Wl) + hl−1
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Automatic Depth Determination
We derive a prior for ResNets called automatic depth 
determination (ADD).

X E[y|x]h1 h2 h3+ +

A neural-network-analog of the global-
local shrinkage prior for robust regression.  
(See for ref: Polson & Scott [2010]) 

Bayesian shrinkage can 
control the effective 
depth of the network 



Extension to More Architectures

See ArXiv version (v2) of ICML paper.
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Automatic depth determination  for ResNets
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⊗ This might help clarify Dropout’s assumptions / 
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practice?

⊗ We derived two algorithms that attempt to 
preserve the simplicity of Dropout:

⊗ Tail-adaptive importance sampling for 
marginal-MAP inference

⊗ Variational EM



Regression

Gal & 
Ghahramani’s 

results 
(10 samples 

train / 500 test)

Variational 
inference 

benchmark

Trained via 
expectation 
propagation

Trained via variational EM.  Exactly 
the same hyperparameter settings 
as Gal & Ghahramani.  Prior chosen 
via performance on auxiliary data set. 



Regression



Regression



Posterior Structure

Heat map of summed moments (mean2 + variance)
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Summary

⊗ Clarified Dropout’s modeling assumptions, 
generalized its Bayesian interpretation. 

⊗ Derived a new prior (ADD) to control the effective 
depth of Residual Networks. 

⊗ Showed our priors (w/ variational EM) can serve as 
direct replacement for dropout in predictive tasks.  



Thank you.  Questions?
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