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Dropout Regularization

Randomly set hidden units to zero (i.e. drop them)
for every forward pass during training [Hinton et al., 2012].
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for every forward pass during training [Hinton et al., 2012].

Standard
Neural
Network

# of Errors on Test Set

220

200

180

160

140+

120

100

a0

MNIST Classification

ery | »
Wi

800 units 2 layers

1200 units 3 layers
— 1200 units 2 layers
—— 2000 units 2 layers |
— 160

2012 SOTA

with Dropout regularization

A
A . J wad AN h‘ ~ \
ﬁ}x w.f‘*"‘%’mf’%” I et
AW

'\‘w'l ':;A\ﬁ. ' ‘kw.""r/ \ WW_M_‘/\MA{\_/\/\W\

500

1000 1500 ?OﬁO 2500 2000

Training Epoch



Dropout Regularization

Geoffrey Hinton

2018 Turing Award winner for Deep Learning
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Dropout Regularization

hl p— fl(hl—lwﬁf Weight Matrix
\

Hidden Units

‘Activation’ function



Dropout Regularization

Implementation as multiplicative noise:

h, = f,(h,_ 1A1Wz)



Dropout Regularization

Implementation as multiplicative noise:

h, = fi(h;_;A/)W) Aii ~ P(4)

Diagonal Matrix of
Random Variables



Dropout Regularization

Implementation as multiplicative noise:

h, = fi(h;_;A/)W) Aii ~ P(4)

Diagonal Matrix of
Random Variables

® Dropout corresponds to p(A) being Bernoulli.



Dropout Regularization

Implementation as multiplicative noise:

h, = fi(h;_;A/)W) Aii ~ P(4)

Diagonal Matrix of
Random Variables

® Dropout corresponds to p(A) being Bernoulli.

® (Gaussian, beta, and uniform noise also work well.



Dropout Regularization

Implementation as multiplicative noise:

h, = fi(h;_;A/)W) Aii ~ P(4)

Diagonal Matrix of
Random Variables

® Dropout corresponds to p(A) being Bernoulli.
® (Gaussian, beta, and uniform noise also work well.

® QOptimization objective:

[log p(yIX {WZ}L+1 (A }L+1)l




Bayesian Interpretation of Dropout

® Gal & Ghahramani [2016] argued that dropout can be
interpreted as variational Bayesian inference.

p(4) serves as a variational approximation
to the posterior p(4]y, X)
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Bayesian Interpretation of Dropout

® Gal & Ghahramani [2016] argued that dropout can be
interpreted as variational Bayesian inference.

® Qbtain predictive uncertainty by averaging over
noise samples.

® However, p(A)—their posterior approximation—Is
fixed, does not depend on data.
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Bayesian Interpretation of Dropout

Gal & Ghahramani [2016) argued that dropout can be
interpreted as variational Bayesian inference.

Obtain predictive uncertainty by averaging over
noise samples.

However, p(\) —their posterior approximation—Is
fixed, does not depend on data.

Subsequent work has attempted to fix this by

Optlmlzmg the noise distribution. [Maeda, 2014 Kingma et al., 2015;
Molchanov et al., 2017; Gal et al., 2017]
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[dropout] is effectively a Monte
Carlo integration over a Gaussian
process posterior approximation
(Gal & Ghahramani, 2016).”

~ Hon et al. (2018)
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DJropout as a Bayesian Prior

® (Consider a scalar-version of the dropout / mult. noise

tion:
SRR by = 4wy, A~ p(A)

® Assume a Gaussian prior on the weight:
w, ~ N(0, o7)
® What is the distribution of the noise-weight product?
h = fith_1A4w))
—

Distribution of this product?
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DJropout as a Bayesian Prior

® (Consider a scalar-version of the dropout / mult. noise

tion:
SRR by = 4wy, A~ p(A)

® Assume a Gaussian prior on the weight:
w, ~ N(0, o7)

® What is the distribution of the noise-weight product?
hy = filhy_ 4w
—

Gaussian scale mixture! (expanded param.)
[Beale & Mallows, 1959]
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DJropout as a Bayesian Prior

® Gaussian scale mixtures can be reparameterized into the
following hierarchical form:

hy = fillh_iAwp), wy~ N(O,Ug), A~ p(4)
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DJropout as a Bayesian Prior

® Gaussian scale mixtures can be reparameterized into the
following hierarchical form:

by = filhy_1 2w, w; ~ N(O,05), 4 ~ p(A)

¢ SWITCH TO HIERARCHICAL PARAMETRIZATION ¢

b = fi(h_w), w; ~N(@0,4765), 4 ~ p(A)
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DJropout as a Bayesian Prior

® Gaussian scale mixtures can be reparameterized into the
following hierarchical form:

hz =fz(hZ—1/11Wz)a Wy~ N(O,Ug), /11 ~ p(4)

¢ SWITCH TO HIERARCHICAL PARAMETRIZATION ¢

b = fi(h_w), w; ~N(@0,4765), 4 ~ p(A)

® Noise moves from likelihood and becomes a scale
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DJropout as a Bayesian Prior

® Gaussian scale mixtures can be reparameterized into the
following hierarchical form:

hz =fz(hZ—1/11Wz)a Wy~ N(O,Ug), /11 ~ p(4)

¢ SWITCH TO HIERARCHICAL PARAMETRIZATION ¢

b = fi(h_w), w; ~N(@0,4765), 4 ~ p(A)

® Noise moves from likelihood and becomes a scale

® Expanded parameterization has been previously used for
Bayesian variable selection [kuo & Maliik, 1998]: Bernoulli

Z ))/;/lll—*_(?
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DJropout as a

Bayesian Prior

® Reparameterization translates between noise

distributions and marginal priors:

Noise Model P(A)

Variance Prior P()\Q)

Marginal Prior p(w)

Bernoulli
(Gaussian
Rayleigh
Inverse Nakagami
Half-Cauchy

Bernoulli
9

X
Exponential

r- 1
Unnamed

38

Spike-and-Slab
Generalized Hyperbolic
Laplace
Student-t
Horseshoe
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Understanding Dropout: Goals

® Revise dropout’s Bayesian interpretation: should
be compatible with any inference procedure (Not
restricted to variational inference).

® Why drop hidden units?: dropping weights
(‘DropConnect’) was explored by Wan et al. [2013]
but has not found wide use.

® Principles for extension to new architectures?
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Dropout as Structured Shrinkage

® Now consider the multivariate case:
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Dropout as Structured Shrinkage

® Now consider the multivariate case:
g)
wyij ~ N(O,00)

h, = f,(h,_;A;W))
| = S AW, Jii~ P

NOISE MATRIX WEIGHT MATRIX

!
[1_

HIDDEN UNITS

di-1 e
di-1 di-1

di-1 di
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Dropout as Structured Shrinkage

® Now consider the multivariate case:
g)
wyij ~ N(O,00)

h, = f,(h,_;A;W))
| = S AW, Jii~ P

NOISE MATRIX WEIGHT MATRIX

HIDDEN UNITS o

d).- -
di-1 L di-1

di-1 o
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Dropout as Structured Shrinkage

® Now consider the multivariate case:
2

h, = f(h,_ A,W)
[ AN B ey A /ll,i,in(/l)

NOISE MATRIX WEIGHT MATRIX

[—

HIDDEN UNITS

X

di-1 di-1

di-1

di-1 d
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Dropout as Structured Shrinkage

® Reparameterized form:

h, = fl(hl—lwl) AZ,W

WEIGHT MATRIX

HIDDEN UNITS

di-1

d

Shared scale
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Dropout as Structured Shrinkage

® Reparameterized form:

Wy~ N(0,4% 65)
h, = f,(h,_; W)

[,1,1
Arii ~ PA)
Uses Bayesian shrinkage to

control the effective number of
hidden units.

WEIGHT MATRIX

| di
| ' Shared scale
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Dropout as Structured Shrinkage

® Reparameterized form:

/Il,i,i ~ p(4)

l,l,l

h; = fi(h,_, W)

Uses Bayesian shrinkage to

WEIGHT MATRIX

control the effective number of

hidden units.

Same structure as the automatic

relevance determination (ARD)

prior proposed by D. MackKay and

R. Neal for Bayesian NNs [1994]. | di

| ' Shared scale
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What about

DropConnect?

Previous work by Wan et al. [2013] proposed dropconnect,
which drops weights independently. Motivated by “co-
adaptation” explanation of Hinton et al. [2012]

NOISE MATRIX

WEIGHT MATRIX

O

di
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What about DropConnect?

Previous work by Wan et al. [2013] proposed dropconnect,
which drops weights independently. Motivated by “co-
adaptation” explanation of Hinton et al. [2012]

NOISE MATRIX WEIGHT MATRIX

Has not been as successful because ARD

structure is broken—no scale sharing.

53



Understanding Dropout: Goals

® Revise dropout’s Bayesian interpretation: should

Dropout is a scale prior, not a posterior

® Why drop hidden units?: dropping weights
(‘DropConnect’) was explored by Wan et al. [2013]
but has not found wide use.

® Principles for extension to new architectures?
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Induces ARD structure to control effective width
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Residual Networks and Skip Connections

Now what about other architectural modifications?
Say, skip connections?

Skip connection

i

h,=f(h_,W)+h_,
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Residual Networks and Skip Connections

Now what about other architectural modifications?

across matrix
WEIGHT MATRIX

di-1

di-1

SKIP CONNECTION

. X Allows information to bypass
hl T m T hl—l interaction with the weights



Automatic Depth Determination

We derive a prior for ResNets called automatic depth
determination (ADD).
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We derive a prior for ResNets called automatic depth
determination (ADD).
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Bayesian shrinkage can
control the effective
depth of the network

WEIGHT MATRIX

Wi~ NO,7oy) 7~ p(7)

mm ARD m— ADD




Automatic Depth Determination

We derive a prior for ResNets called automatic depth
determination (ADD).

O

e

Bayesian shrinkage can
control the effective
depth of the network

WEIGHT MATRIX

A neural-network-analog of the global-
local shrinkage prior for robust regression.
(See for ref: Polson & Scott [2010]) wem ARD s ADD




xtension to More Architectures

\

(Stochastic Depth)

(¢) ADD
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(b) ARD (Dropout)
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N
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(a) Unstructured (DropConnect

(e) CNN ARD (SpatialDropout)

(d) LSTM ARD

See ArXiv version (v2) of ICML paper.
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® Revise dropout’s Bayesian interpretation: should

Dropout is a scale prior, not a posterior

® Why drop hidden units?: dropping weights

Induces ARD structure to control effective width

® Principles for extension to new architectures?
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Understanding Dropout: Goals

® Revise dropout’s Bayesian interpretation: should

Dropout is a scale prior, not a posterior

® Why drop hidden units?: dropping weights

Induces ARD structure to control effective width

® Principles for extension to new architectures?

Automatic depth determination for ResNets

69
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Regression
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Regression

Test Set RMSE

Dropout | Prob. Backprop | Deep GP ARD ADD ARD-ADD
Bcston 2.80 +.13 2.795 1.16 2.38 +.12 || 2.158 +.20 | 2.343 +.31 | 2.367 1.18
Concrete 4.50 +.18 9.241 +.12 4.64 +.11 3.805 +.28 | 4.084 +34 | 3.761 +.23
Energy 0.47 +.01 0.903 +.05 0.57 +.02 0.852 +.01 | 0.867 .11 | 0.853 +.08
Kin8nm 0.08 +.00 0.071 +.00 0.05 +.00 || 0.066 +.01 | 0.064 .00 | 0.064 +.00
Pcwer 3.63 +.04 4.028 +.03 3.60 +.03 3.486 +.10 | 3.290 .06 | 3.236 +.07
Wine 0.60 +.01 0.643 +.01 0.50 +01 || 0.561 +.03 | 0.585 .01 | 0.538 +.03
Yacht 0.66 +.06 0.848 +.05 0.98 +.09 0.691 +.12 | 0.657 =.14 | 0.604 +.18




Regression

“““““““““““““

Test Set RMSE ARD. = ADD

Dropout | Prob. Backprop | DeepGP ||  ARD ADD ARD-ADD

Boston 2.80 1.13 2.795 1.16 2.38 +.12 || 2.158 1.20 | 2.343 +. 2.367 1.18

Ccncrete  4.00 +.1# 0.241 +.12 4.64 4 3.800 £28 | 4.084 +34 | 3.761 +.23
Encrgy 0.47 +.01 0.903 +.05 0.57 +.02 0.852 +.01 ().867 +.11 | 0.853 +.08
Kin8nm 0.08 +.00 0.071 +.00 0.05 +.00 0.066 +.01 064 =00 | 0.064 +.00

Pcwer 3.03 +.04 1.028 +.03 3.60 £.03 3.480 +.11 5 290 .06 | 3.236 +.07
Wine 0.60 +.01 0.643 +.01 0.50 +.01 0.061 £.03 | 0.555 .01 | 0.538 +.03

Yacht 0.66 +.06 | 0.848 +.05 0.98 £.09 0.691 +.12 | 0.657 x.14 | 0.604 +.16
Avg.Rank  44+17 | 5605 3118 || 3.0+11 | 2.9z10 2.0 £1.1




Posterior Structure

Heat map of summed moments (mean?2 + variance)
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Summary

® Clarified Dropout’s modeling assumptions,
generalized its Bayesian interpretation.

® Derived a new prior (ADD) to control the effective
depth of Residual Networks.

® Showed our priors (w/ variational EM) can serve as
direct replacement for dropout in predictive tasks.
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Thank you. Questions?
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