
MACHINE LEARNING

UNDER HUMAN GUIDANCE

Eric Nalisnick

Assistant Professor of Machine Learning

University of Amsterdam

Fall 2023

1

Contents

1 Background 3

1.1 Supervised Learning . 3

1.2 Reinforcement Learning . 3

2 Supervised Learning from Human-Generated Labels 6

2.1 Pooled: Multinomial Model . 7

2.2 Unpooled: Dawid-Skene Model . 9

2.3 Jointly Learning Ground-Truth and a Predictive Model 12

2.4 Active Learning . 14

3 Imitation Learning 20

3.1 Behavior Cloning . 21

3.2 Policy Learning via an Interactive Demonstrator 23

3.3 Distribution Matching . 23

3.4 Inverse Reinforcement Learning . 26

3.5 Reinforcement Learning with Human Feedback 29

2

1 Background

We will consider both supervised learning and reinforcement learning and hence give brief

introductions below.

1.1 Supervised Learning

The goal of supervised learning is to map feature vectors, the independent variable, to

labels or responses, the dependent variable. Let X denote the feature space, and let Y
denote the label / response space. xn ∈ X denotes a feature vector, and yn ∈ Y denotes

the associated response / label defined by Y. The N -element training sample is then D =

{xn, yn}Nn=1. We will almost always work with a probabilistic formulation, using the negative

log-likelihood (NLL) as the training objective. Given a paramerization f(x;θ), where θ are

the model parameters, we can follow the framework of generalized linear models, letting

Ey|x = f(x;θ). The NLL is then:

`(θ;D) = − log

{
N∏
n=1

p(yn|xn,θ)

}

=

N∑
n=1

− log p(yn|xn,θ).

(1)

When Y = R, real numbers, then the supervised learning problem is usually called regression,

and when Y denotes discrete variables, then the task is classification. It is an easy calculation

to show that, for the case of regression, plugging in the normal distribution to the NLL above

yields the squared-error loss function. Similarly, for classification, plugging in the categorical

distribution results in the cross-entropy loss function.

1.2 Reinforcement Learning

Reinforcement learning (RL) considers sequential decision-making problems in which models

take actions so that their reward is maximized in an environment. Let s ∈ S be the space of

states, and let a ∈ A be the space of actions. RL usually consider the underlying generative

model to be a Markov Decision Process defined by

st+1 ∼ P(st+1|st, at), rt = R(st; at−1, , st−1)

where P(st+1|st, at) is the transition probability of moving from state st to st+1 by taking

action at. Moreover, R(st; at−1, , st−1) is a reward function that returns the reward of

transitioning to st from st−1 using action at−1. The reward not need be a function of

the previous state and action, e.g. rt = R(st). The goal of RL is to obtain a policy π :

S × A → [0, 1] that determines the appropriate action to take (such that long-term reward

is maximized) when in a given state: π(a|s) = Pr(at = a|st = st). The policy is determined

by parameters θ, so we write πθ(a|s). Collecting a T -length (with T possibly being infinite)

series of state-action pairs

{(st, at)}Tt=1 where at ∼ πθ(a|st), st+1 ∼ P(st+1|st, at)

3

is called rolling out a policy, or a rollout.

Optimization Objective The goal is to learn a policy that maximizes return, which is

a function of a state st:

G (st; {at, at+1, . . .}) =

∞∑
t′=0

γt
′
· rt+t′

where γ ∈ [0, 1) is a discount factor that emphasizes near-term rewards. The return compute

the future rewards rt+t′ are obtained by following actions {at, at+1, . . .} from an initial state

st. Given the definition of return, we can then quantify the utility of a given state via the

value function. It quantifies the expected return from a given state:

V π(s) = Eπ [G (st; {at, at+1, . . .}) | st = s]

=
∑
a∈A

π(a|s) · Eπ [G (st; {at, at+1, . . .}) | st = s, at = a]

where the expectation is taken over rollouts of π. The final RL optimization objective,

known as the Bellman equation, is to find the policy whose stationary distribution over

states places high probability on ‘valuable’ states:

J (θ) =
∑
s∈S

dπ(θ)(s) · V π(θ)(s)

=
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) · Eπ(θ) [G (st; {at, at+1, . . .}) | st = s, at = a]︸ ︷︷ ︸
Qπ(θ)(s,a)

=
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) ·Qπ(θ)(s, a)

(2)

where dπ(θ) is the stationary distribution under policy πθ, meaning it is the marginal distri-

bution over state visitations. The expectation within the value function has its own name,

the Q-function, that quantifies the value of a state-action pair. I write π(θ) in the super-

scripts to emphasize that these quantities are dependent upon the parameters that are being

optimized. Ideally, we want to find a policy such that

θ∗ = arg max
θ∈Θ

J (θ).

There are many approaches to this optimization problem, of course, with crucial decisions

needed about how to calculate various statistics of the states visited during finite-sample

rollouts. We will mostly ignore these details, referring the reader to any standard text on

RL if needed.

Entropy-Regularized RL Often MDPs are non-smooth and in need of regularization.

Thus entropy-regularized MDPs are often considered, which use the modified reward func-

tion:

RH(st; at−1, st−1, λ) = R(st; at−1, , st−1) + λ ·H [π(at|st)]

4

where λ ∈ R+ is a weighting constant and H [π(at|st)] is the entropy of the distribution

over actions at the current state. Hence the modified reward encourages policies that not

only obtain high reward but also lead to states that are not ‘dead ends,’ meaning that

there are relatively many actions with non-negligible probability with which to transition

out of the current state. Under entropy-regularization, the optimal policy has a nice (yet

self-referential) form:

π∗(a|s) =
exp

{
λ−1 ·Qπ∗(s, a)

}∑
a∈A exp {λ−1 ·Qπ∗(s, a)}

= exp
{
λ−1

(
Qπ
∗
(s, a)− V π

∗
(s)
)}

.

(3)

We see that the optimal policy is the exponentiated difference between the Q- and value

functions.

Advantage Function For a reference policy π, we may at times be curious what could

be gained by taking an alternative action, possibly sampled from a difference policy: a ∼ π′ .
This can be quantified by the advantage function, which is defined as:

Aπ(s, a) = Qπ(s, a) − V π(s).

We see it is the difference between the Q-function, evaluated at the current state and

the action under consideration, and the value function defined from the reference policy

π. Comparing this equation to Equation 4, we see that the optimal policy under entropy

regularization is just the exponentiated advantage function:

π∗(a|s) = exp
{
λ−1

(
Qπ
∗
(s, a)− V π

∗
(s)
)}

= exp
{
λ−1 ·Aπ

∗
(s, a)

} (4)

where λ is again the weight on the entropy term.

Performance Difference Lemma Lastly, the advantage function also has a useful the-

oretical property, which we show below in the form of the Performance Difference Lemma

(PDL) (Kakade and Langford, 2002).

Theorem 1.1. Performance Difference Lemma: For two policies π and π′, the

difference between their value functions is equivalently expressed in terms of the

advantage function:

V π
′
(s)− V π(s) =

1

1− γ
Es∼d(s;π′)Ea∼π′ [A

π(s, a)] (5)

where γ is the discount, d(s;π′) is the stationary distribution over states from fol-

lowing π′, and Aπ(s, a) is the advantage function under π.

See pages 6 and 7 of these notes for a proof: https://nanjiang.cs.illinois.edu/

files/cs542f22/note1.pdf. An alternative, more explicit proof can be found here: https:

//wensun.github.io/CS4789_data/PDL.pdf. The intuition behind the PDL is that the

5

https://nanjiang.cs.illinois.edu/files/cs542f22/note1.pdf
https://nanjiang.cs.illinois.edu/files/cs542f22/note1.pdf
https://wensun.github.io/CS4789_data/PDL.pdf
https://wensun.github.io/CS4789_data/PDL.pdf

difference in the value of two policies can be expressed as the advantage of one policy under

rollouts (i.e the expectation) of the other. This will be a useful tool when comparing, for

example, a policy found through an approximation vs an optimal one.

2 Supervised Learning from Human-Generated Labels

When conducting supervised learning, we often don’t have access to some objective mech-

anism for obtaining the labels. Rather, we need to ask usually several human annotators

to provide one. This process is also known as crowdsourcing and whole platforms such as

Amazon Mechanical Turk exist in order to make it easy to query human annotators at scale.

Specifically, assume we have N feature vectors {xn}Nn=1, pass them to L annotators, and

they each produce a response yn,l ∈ {0, 1}K , where K is the total number of classes (i.e. a

multi-class classification task) and yn,l,k = 1 denotes that the annotator has produced a

label for the kth class. All other dimensions are zero.

We can, of course, train a supervised model on this data directly by assuming each

response is an independent observation:

p
(
{yn,1, . . . ,yn,L}Nn=1|xn, . . . ,xN

)
=

N∏
n=1

L∏
l=1

p (yn,l|xn) ,

but this model is in jeopardy of being mislead by noisy labelers. Alternatively, one could

use all data, but give a weight to each annotator that reflects their quality:

N∏
n=1

L∏
l=1

[(p (yn,l|xn)]
wl , where wl ≥ 0.

This is a better option, but the weights wl are hard to determine without access to a

ground-truth label to separate the experts from the incompetent labelers.

Given these challenges of using all provided labels, methods that infer some ground-truth

label have received much attention. The simplest and most common of these methods—

already alluded to above—is majority voting:

t̂n,k = 1 if k = arg max
k∈[1,K]

L∑
l=1

yn,l,k.

All methods for inferring ground-truth work by checking for some form of consensus across

the annotators. This has the drawback that there may be one expert annotator and four

incompetent ones, but if the incompetent ones all agree, then the expert will be seen as an

outlier and likely in the wrong. But, of course, this problem is nearly impossible to prevent

without an external signal of quality.

Below we will consider more sophisticated models that estimate a confusion matrix to

understand how the crowd is generating their labels. A crucial modeling in this setting is

whether to model the ability of the human labelers. Doing so, of course, incurs a significant

modeling and computational overhead, which can lead one astray if the number of labels

observed per annotator is small. Below we present two common probabilistic models for

determining consensus labels in crowdsourcing applications—pooled and unpooled. Here,

6

‘pooling’ refers to whether we pool all annotators together or try to model their individual

abilities.

2.1 Pooled: Multinomial Model

The simplest model of this annotation scheme is a pooled multinomial model—pooled because

we don’t model individual annotators. Rather, we assume we have K × K parameters

πk,j ∈ [0, 1], which represents the probability that the labelers will return class j when

the true class is k. This implies that these parameters are normalized across potential

mislabelings:
∑K
j=1 πk,j = 1. We can think of the full K ×K matrix of parameters, denote

it as C, as a confusion matrix, again, representing the crowd’s mislabeling tendencies. We

will see how to extend this model to assess the quality of individual annotators in the next

sub-section.

Observed Truth We first discuss an easier case of the model above where we assume that

we know the true annotation, denoted by an indicator vector t such that tk = 1 denotes

that the true class is k and all other dimensions are zero. The generative process can then

be written as:

tn ∼ Categorical(p∗), yn,l ∼ Categorical (yn,l; 〈C, tn〉) ,∀ n ∈ [1, N], l ∈ [1, L] (6)

where p∗ are the underlying truth (i.e. class) probabilities, which are unknown. The inner

product 〈C, t〉 = πk, and thus we can think of t as an indicator vector, selecting out a

particular row of C corresponding to the ground-truth class. Assume we have observed a

data set Y =
{
{yn,l}Ll=1

}N
n=1

and the corresponding ground-truths T = {tn}Nn=1. We can

write the log-likelihood for the above model as:

`
(
{πk,j}Kk,j=1;Y,T

)
= log

{
N∏
n=1

K∏
k=1

L∏
l=1

p (yn,l|tn,k)

}

= log


N∏
n=1

K∏
k=1

[
L∏
l=1

Categorical (yn,l;πk)

]tn,k
= log


N∏
n=1

K∏
k=1

 L∏
l=1

K∏
j=1

π
yn,l,j
k,j

tn,k
= log


N∏
n=1

K∏
k=1

 K∏
j=1

π
∑
l yn,l,j

k,j

tn,k
=

N∑
n=1

K∑
k=1

tn,k ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j .

(7)

Now to find a maximum likelihood estimator (MLE) for πk,j , we can take the derivative

and set it equal to zero. Yet, since
∑K
j=1 πk,j = 1, we also need to incorporate this constraint

7

as a lagrangian:

∂

∂πk,j
`
(
{πk,j}Kk,j=1, λ;Y,T

)
=

∂

∂πk,j
`
(
{πk,j}Kk,j=1;Y,T

)
+

∂

∂πk,j
λ

K∑
k=1

1−
K∑
j=1

πk,j


=

[
N∑
n=1

tn,k

(
L∑
l=1

yn,l,j

)
· 1

πk,j

]
− λ

(8)

Setting this equation to zero, we have

0 =

[
N∑
n=1

tn,k

(
L∑
l=1

yn,l,j

)
· 1

πk,j

]
− λ

πk,j =
1

λ

[
N∑
n=1

tn,k

L∑
l=1

yn,l,j

]
.

(9)

Now making sure we obey the sum-to-one constraint, we have

1 =

K∑
j=1

πk,j

=
1

λ

K∑
j=1

N∑
n=1

tn,k

L∑
l=1

yn,l,j

λ =

K∑
j=1

N∑
n=1

tn,k

L∑
l=1

yn,l,j .

(10)

Putting everything together, we then have the final form for the MLE:

π̂k,j =

∑N
n=1 tn,k

∑L
l=1 yn,l,j∑K

i=1

∑N
n=1 tn,k

∑L
l=1 yn,l,i

. (11)

We can interpret this quantity as the number of times class j is reported by an annotator

when the true class is k, divided by the total number of annotations of any result when the

true class is k.

Unobserved Truth Previously we assumed we had access to the ground-truth class tn,

but often this is an unrealistic assumption. If we have the ground-truth, then we probably

wouldn’t need to query the annotators in the first place. Luckily, this model is amenable to

a standard missing data treatment via the expectation-maximization (EM) algorithm. We

can construct a conditionally conjugate posterior distribution over t, compute its expected

value, and then perform the maximization step above using these expectations instead of the

ground-truth. Firstly, the aforementioned posterior can be obtained via a prior distribution

8

over t:

p (tn,k = 1 | yn,1, . . . ,yn,L) ∝

(
L∏
l=1

p (yn,l|tn,k = 1)

)
· p (tn,k = 1)

= pk ·
L∏
l=1

Categorical (yn,l;πk)

(12)

where pk = p (tn,k = 1), as it is assumed to be the same across all n. Normalizing this

distribution, we have

p (tn,k = 1 | yn,1, . . . ,yn,L) =
pk ·

∏L
l=1 Categorical (yn,l;πk)∑K

i=1 pi ·
∏L
l=1 Categorical (yn,l;πi)

=
pk ·

∏K
j=1 π

∑
l yn,l,j

k,j∑K
i=1 pi ·

∏K
j=1 π

∑
l yn,l,j

i,j

= p̂tn,k

(13)

where the denominator is simply a sum over all classes. If the prior probabilities are equal

(pk = pi, ∀i ∈ [1,K]), then these terms would cancel out. We denote the above quantity as

p̂tn,k for the sake of notational brevity.

Now, formally, the expectation step (i.e. E-step) of the EM procedure computes the

expected log-likelihood:

ET|Y
[
`
(
{πk,j}Kk,j=1;Y,T

)]
= ET|Y

 N∑
n=1

K∑
k=1

tn,k ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j


=

N∑
n=1

K∑
k=1

Et|y [tn,k] ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j

=

N∑
n=1

K∑
k=1

p̂tn,k ·
K∑
j=1

(
L∑
l=1

yn,l,j

)
· log πk,j .

(14)

The M-step is to maximize this equation, just as before, which yields the estimator:

π̂k,j =

∑N
n=1 p̂

t
n,k

∑L
l=1 yn,l,j∑K

i=1

∑N
n=1 p̂

t
n,k

∑L
l=1 yn,l,i

(15)

which can be interpreted as a ‘soft’ version of the MLE presented in Equation 11. The

EM procedures is summarized by iteratively computing Equation 13 and Equation 15 until

convergence.

2.2 Unpooled: Dawid-Skene Model

In many applications with crowdsourced data, we want models that can not only understand

how the crowd is mislabeling, but we want that information per annotator. Having such

information allows poor annotators to be excluded from either the current or future requests.

That can be done with the multinomial model above but with one change, having a confusion

matrix Cl for every labeler, l ∈ [1, L].Doing so expands the number of parameters fromK×K

9

to L×K×K. Let πl,k,j denote the probability of the l-th labeler reporting class j when the

true class is k. And again,
∑
j πl,k,j = 1. This model is known as the Dawid-Skene model,

named after the authors of the paper in which it was first introduced (Dawid and Skene,

1979).

Observed Truth Again we first discuss the easier case of having access to the true an-

notation, denoted by an indicator vector t such that tk = 1 denotes that the true class is k

and all other dimensions are zero. The generative process can then be written as:

tn ∼ Categorical(p∗), yn,l ∼ Categorical (yn,l; 〈Cl, tn〉) ,∀ n ∈ [1, N], l ∈ [1, L] (16)

where p∗ are the underlying truth (i.e. class) probabilities, which are unknown. Assume

we have observed a data set Y =
{
{yn,l}Ll=1

}N
n=1

and the corresponding ground-truths

T = {tn}Nn=1. We can write the log-likelihood for the above model as:

`
(
{Cl}Ll=1;Y,T

)
= log

{
N∏
n=1

K∏
k=1

L∏
l=1

p (yn,l|tn,k)

}

= log


N∏
n=1

K∏
k=1

[
L∏
l=1

Categorical (yn,l;πl,k)

]tn,k
= log


N∏
n=1

K∏
k=1

 L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k
=

N∑
n=1

K∑
k=1

tn,k ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j .

(17)

Now to find a maximum likelihood estimator (MLE) for πl,k,j , we can take the derivative

and set it equal to zero. Yet, since
∑K
j=1 πl,k,j = 1, we also need to incorporate this

constraint as a lagrangian:

∂

∂πl,k,j
`
(
{Cl}Ll=1, λ;Y,T

)
=

∂

∂πl,k,j
`
(
{Cl}Ll=1;Y,T

)
+

∂

∂πl,k,j
λ

K∑
k=1

1−
K∑
j=1

πl,k,j


=

[
N∑
n=1

tn,k · yn,l,j ·
1

πl,k,j

]
− λ

(18)

Setting this equation to zero, we have

0 =

[
N∑
n=1

tn,k · yn,l,j ·
1

πl,k,j

]
− λ

πl,k,j =
1

λ

[
N∑
n=1

tn,k · yn,l,j

]
.

(19)

10

Making sure we obey the sum-to-one constraint, we have

1 =

K∑
j=1

πl,k,j

=
1

λ

K∑
j=1

N∑
n=1

tn,k · yn,l,j

λ =

K∑
j=1

N∑
n=1

tn,k · yn,l,j .

(20)

Putting everything together, we then have the final form for the MLE:

π̂l,k,j =

∑N
n=1 tn,k · yn,l,j∑K

i=1

∑N
n=1 tn,k · yn,l,i

. (21)

We can interpret this quantity as the number of times class j is reported by annotator l

when the true class is k, divided by the total number of annotations reported by annotator

l, of any result, when the true class is k.

Unobserved Truth We again turn to the more interesting case in which the ground-truth

class tn is not observed. Again we can apply the EM algorithm to fill in the missing truth

variables. The first step is the same as above: placing a prior distribution over t:

p (tn,k | yn,1, . . . ,yn,L) ∝

(
L∏
l=1

p (yn,l|tn,k)

)
· p (tn,k)

= pk ·
L∏
l=1

Categorical (yn,l;πl,k)

(22)

where pk = p (tn,k), as it is assumed to be the same across all n. Normalizing this distribu-

tion, we have

p (tn,k | yn,1, . . . ,yn,L) =
pk ·

∏L
l=1

∏K
j=1 π

yn,l,j
l,k,j∑K

i=1 pi ·
∏L
l=1

∏K
j=1 π

yn,l,j
l,i,j

= p̂tn,k (23)

where the denominator is simply a sum over all classes. Again the expectation step (i.e. E-

step) of the EM procedure computes the expected log-likelihood:

ET|Y
[
`
(
{Cl}Ll=1;Y,T

)]
= ET|Y

 N∑
n=1

K∑
k=1

tn,k ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j


=

N∑
n=1

K∑
k=1

Et|y [tn,k] ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j

=

N∑
n=1

K∑
k=1

p̂tn,k ·
L∑
l=1

K∑
j=1

yn,l,j · log πl,k,j .

(24)

11

The M-step is to maximize this equation, just as before, which yields the estimator:

π̂k,j =

∑N
n=1 p̂

t
n,k · yn,l,j∑K

i=1

∑N
n=1 p̂

t
n,k · yn,l,i

(25)

which can be interpreted as a ‘soft’ version of the MLE presented in Equation 21. The

EM procedures is summarized by iteratively computing Equation 23 and Equation 25 until

convergence.

2.3 Jointly Learning Ground-Truth and a Predictive Model

In the setting of unobserved truth, the Multinomial and Dawid-Skene models are first applied

to infer a ground-truth label, which would then be used to train a traditional classifier.

However, if obtaining this downstream classifier is our ultimate, then perhaps it is sub-

optimal to have learning be decoupled into a two-stage process. Rather, as proposed by

Raykar et al. (2010), it is better to have a joint formulation. A joint objective can be defined

as follows. Let p(t|x,θ) denote the classifier defined by the conditional probability of the

ground-truth variable t, given the features x and classifier parameters θ. The generative

process is then:

tn ∼ p(tn|xn,θ), yn,l ∼ Categorical (yn,l; 〈Cl, tn〉) ,∀ n ∈ [1, N], l ∈ [1, L]. (26)

Note that this model is essentially the Dawid-Skene model but with now the classifier gen-

erating the higher-level distribution over truth.

To learn in this model, the conditional probability of just the annotations can be written

by marginalizing out the ground-truth:

p (Y | x1, . . . ,xN ,θ) =

N∏
n=1

p (yn,1, . . . ,yn,L | xn,θ)

=

N∏
n=1

∑
tn

p (yn,1, . . . ,yn,L | tn) · p (tn | xn,θ)

=

N∏
n=1

∑
tn

(
L∏
l=1

p (yn,l | tn)

)
· p (tn | xn,θ)

=

N∏
n=1

∑
tn

K∏
k=1

[
p (tn,k | xn,θ) ·

L∏
l=1

p (yn,l | tn,k = 1)

]tn,k

=

N∏
n=1

∑
tn

K∏
k=1

[
p (tn,k | xn,θ) ·

L∏
l=1

Categorical (yn,l; πl,k)

]tn,k

=

N∏
n=1

∑
tn

K∏
k=1

p (tn,k | xn,θ) ·
L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k

(27)

where we see that this joint model is essentially the Dawid-Skene model with the truth

variable t marginalized away via the classifier.

Learning can again be done via the EM algorithm, but here we need to work with a

12

lower-bound on the marginal likelihood from above:

`
(
{Cl}Ll=1,θ;Y

)
= log


N∏
n=1

∑
tn

K∏
k=1

p (tn,k | xn,θ) ·
L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k
=

N∑
n=1

log

∑
tn

K∏
k=1

p (tn,k | xn,θ) ·
L∏
l=1

K∏
j=1

π
yn,l,j
l,k,j

tn,k
≥

N∑
n=1

∑
tn

K∑
k=1

tn,k · p (tn,k | xn,θ) ·
L∑
l=1

K∑
j=1

yn,l,j · logπl,k,j

=

N∑
n=1

K∑
k=1

p (tn,k = 1 | xn,θ) ·
L∑
l=1

K∑
j=1

yn,l,j · logπl,k,j

= ˜̀
(
{Cl}Ll=1,θ;Y

)

(28)

where the inequality is obtained via Jensen’s inequality for convex functions.

Now finding an estimator for πl,k,j :

∂

∂πl,k,j
˜̀
(
{Cl}Ll=1,θ, λ;Y

)
=

∂

∂πl,k,j
˜̀
(
{Cl}Ll=1,θ;Y

)
+ λ

K∑
k=1

1−
K∑
j=1

πl,k,j


=

N∑
n=1

p (tn,k = 1 | xn,θ) · yn,l,j ·
1

πl,k,j
− λ

πl,k,j =
1

λ

[
N∑
n=1

p (tn,k = 1 | xn,θ) · yn,l,j

]

λ =

K∑
j=1

N∑
n=1

p (tn,k = 1 | xn,θ) · yn,l,j .

(29)

Putting it all together, we then have:

π̂l,k,j =

∑N
n=1 p (tn,k = 1 | xn,θ) · yn,l,j∑K

i=1

∑N
n=1 p (tn,k = 1 | xn,θ) · yn,l,i

(30)

Then given the confusion matrix parameters, we can estimate the classifier as follows. Com-

puting the posterior over truth values via Equation 23, the training objective for the classifier

13

is:

ET|Y [`(θ; T,X)] = ET|Y [log p(T|X,θ)]

= ET|Y

[
N∑
n=1

log p(tb|xn,θ)

]

= ET|Y

[
N∑
n=1

log Categorical(tb; f(xn;θ))

]

= ET|Y

[
N∑
n=1

K∑
k=1

tn,k log fk(xn;θ))

]

=

N∑
n=1

K∑
k=1

ET|Y [tn,k] log fk(xn;θ))

=

N∑
n=1

K∑
k=1

p̂tn,k log fk(xn;θ))

(31)

where p̂tn,k is again from Equation 23. We can see this is the usually classifier loss but with

‘soft’ labels. If the classifier would perfectly recreate these posterior probabilities, then they

would be plugged into Equation 30, which in turn would recover Equation 25.

Alternative Formulation Yan et al. (2010) proposed a variant of this model that con-

ditions both the truth and observed label on the features:

tn ∼ p (tn|xn,θt) , yn,l ∼ p (yn,l|xn, tn,θl) , ∀ n ∈ [1, N], l ∈ [1, L]. (32)

The logic behind this alteration is that, by having y ∼ p(y|t), the Raykar et al. (2010)

model assumes that the observation is a noisy version of the ground-truth and that noise is

completely determined by the ground-truth class. However, in many real-world cases, the

label error might be due to noise in the input features as well. For example, perhaps the

human is annotating an image, and the image is of very poor quality. The low-quality of the

input could be the reason why the annotator produces the wrong label—i.e. the noise from

the input propagating into the label—and not due to any systematic labeling bias they have

for a particular class. This model also has benefits for active learning, as we will consider

in the next subsection.

2.4 Active Learning

In the previous subsection, we were mostly concerned with how to filter out noise or come

to consensus when given multiple annotations. This subsection focuses on how we obtain

labels from humans in the first place and, ideally, through the most efficient means possible.

Collecting human annotations is expensive as it costs humans their time. For example,

annotating the words in an audio recording takes about ten times longer than the audio

recording itself. In turn, the person wanting the labels often must compensate the workers

with payment. Hence we’d like methodologies that minimize these costs by minimizing the

number of labels collected. This brings us to the sub-field of active learning ; most of the

information from this section is reproduced from the authoritative survey of Settles (2012).

14

Definition & Types Active learning (AL) allows predictive models to choose their own

training data, similarly to how a math student might ask their teacher for guidance on a

particular problem they find difficult. The high-level idea is that the model will inspect an

unlabeled data point and then determine if its label were acquired, then the model’s perfor-

mance would substantially improve. This process is repeated until the model’s performance

has either reached an acceptable level or plateaus to the level yielded by training on all

available data. There are three standard scenarios considered for AL:

• Membership Query Synthesis (MQS): This is the most general form of AL. In this

setting, the model can request any feature vector in the feature space X as well as

its label. This works well when every point in the feature space has a clearly defined

label. For example, the task of predicting if a robot arm, in a particular configuration,

can hold a glass of water without spilling is a good use case for MQS (assuming X
does not contain any impossible arm configurations). For every feature vector chosen

by the model, it is quite easy to test if the arm position is good or not simply by

running the experiment and seeing if any water spills from the cup. On the other

hand, MQS is not good for image classification since it is very likely feature vectors

could be requested for which there is no discernible label. For example, if we are

considering the space of binary images representing digits, there are many possible

binary images that correspond no recognizable digit.

• Stream-Based Selective Sampling: In this setting, feature vectors are assumed to

appear sequentially, and the model must decided whether to request its label or discard

the vector as ‘uninteresting.’ This use case is prevalent in data collection on low-

resource devices. Imagine there is an autonomous vehicle driving in a new location, and

its designers would like the car to save its sensor readings during ‘interesting’ sections

of the road or during novel events. It would be too costly to save all information from

the whole driving run and so the system must decide for itself which data points to

save for later annotation.

• Pool-Based Active Learning: This setting—which is the most commonly studies

formulation—assumes that there is an unlabeled data set known as the pool set, and

the model is allowed to request the label for a particular member of the pool set. Once

the label is acquired, that point is removed from the pool, and the model is retrained

to include that newly selected point and label. The process repeats until the model

reaches a satisfactory performance or the pool set is empty. There is also a batch

variant in which the model can request multiple points for labeling at each round.

Acquisition Functions for Pool-Based Active Learning We will discuss pool-based

AL exclusively from here forward, and thus when writing ‘AL’, we mean the pool-based

formulation. The setting can be defined more formally as follows. We consider a predictive

model p(y|x,θ), where y is the label, x are the features, and θ ∈ Θ are the parameters.

We assume this model is trained on an initial labeled dataset D0 = {xn,yn}Nn=1, and

thus we denote this model as p(y|x,θt=0) where the subscript on the parameter indexes

time. In addition to the initial dataset D0, we assume access to (i) an unlabeled pool

set X t=0
p = {xm}Mm=1, and (ii) an oracle labeling mechanism which can provide labels

Yp = {ym}Mm=1 for the corresponding features in the pool set.

15

At each step in the AL loop, an acquisition function (AF) A(x;θt) is evaluated for every

member of the pool set. A is written as a function of θt because the AF changes along with

the state of the predictive model. We want the AF to acquire the most interesting point

to the current model and thus will collect the label of the point that maximizes the AF,

denoted x∗:

x∗ = arg max
x∈X tp

A(x;θt). (33)

Once the point has been chosen, the oracle provides it’s label, and the new labeled set

becomes:

Dt+1 = Dt ∪ {x∗,y∗}.

Moreover, the chosen point is removed from the pool set: Xt+1
p = Xt

p \ {x∗}. The model is

then re-trained on Dt+1 to produce a new set of parameters θt+1, and the process repeats

by collecting a new point to form Dt+2, which in turn produces θt+2, and so on until either

the pool set is empty or a satisfactory level of performance is reached (which would require

evaluating the model on a held-out set after every re-training step). We now go on to

describe several ways to implement the AF.

Idealized Setting: Error Reduction Ideally, we want to collect (x∗,y∗) that, once

the model is trained on the pair, will reduce the model’s error on all future data points

the model might see. This formulation as been called optimal active learning (Roy and

McCallum, 2001), and the corresponding idealized AF is:

x∗ = arg max
x∈X tp

∫
x

(D [P(y|x) || p (y|x,θt)] − D [P(y|x) || p (y|x,θ(x,y∗))]) P(x) dx (34)

where θ(x,y∗) denotes the parameters produced by training on Dt ∪ {x,y∗} and D is some

measure of discrepancy or divergence between the true generative process P(y|x) and the

model—either at the current time step (θt) or updated with x (θ(x,y∗)). If D is the

Kullback–Leibler divergence, then this AF is picking the point that results in the best

improvement under maximum likelihood estimation. Thus we can think of this—again

idealized—AF as looking ahead to the future, if we were to train the model on a particular

point from the pool set, and see if that new model would better minimize the divergence

between the model and the true distribution that is generating the data. This construction

is called ‘idealized’ because we never have access to P(x), P(y|x), and even if we did, it

requires collecting the labels for all elements of the pool set—the very thing we wish to

avoid. If (D [P(y|x) || p (y|x,θt)] − D [P(y|x) || p (y|x,θ(x,y∗))]) < 0 for every element of

the pool set, then AL should be stopped with θt being the final model.

However, Roy and McCallum (2001) gives the procedure that aims to approximate the

above idealized AF. Firstly, when D is taken to be the KL divergence, notice that:

KLD [P(y|x) || p (y|x,θt)] − KLD [P(y|x) || p (y|x,θ(x,y∗))]

= EP(y|x) [log p (y|x,θ(x,y∗))− log p (y|x,θt)] + H [P(y|x)]−H [P(y|x)]

= EP(y|x) [log p (y|x,θ(x,y∗))− log p (y|x,θt)] .

(35)

Secondly, they use the pool set to approximate the integral over the underlying feature

16

distribution: P(x) ≈ 1
M

∑M
m=1 δ [|x− xn|]. Thirdly, this still leaves the expectation over the

unknown distribution P(y|x); they recommend to approximate this with the current model:

P(y|x) ≈ p (y|x,θt). Note that under this assumption, the difference of divergences further

simplifies to:

EP(y|x) [log p (y|x,θ(x,y∗))− log p (y|x,θt)]

≈ Ep(y|x,θt) [log p (y|x,θ(x,y∗))] + H [p (y|x,θt)] ,
(36)

where the second term is the entropy of the current model, and when integrated over the

empirical distribution of the pool set, will be a constant (and thus can be dropped). The

only remaining difficulty is that the above expression still depends on the true label y∗,

which we do not want to assume is know. Roy and McCallum (2001) again leverage the

existing model for this, assuming that y∗ ∼ p (y|x,θt). The final realizable AF is then:

x∗ = arg max
x∈X tp

1

M

M∑
m=1

Ep(y′|x,θt)Ep(y|xm,θt) [log p (y|xm,θ(x,y′))]

≈ arg max
x∈X tp

1

M
· 1

J
· 1

S

M∑
m=1

J∑
j=1

S∑
s=1

log p
(
ŷs|xm,θ(x, ŷ′j)

) (37)

where the approximation in the second line uses J samples of the proxy true label, ŷ′j ∼
p (y′|x,θt), and S samples ŷs ∼ p (y|xm,θt) to approximate the two expectations. The

intuition behind this AF is that it will look for points from the pool set that will result

in models that ‘agree’ with the current distribution. Or as Roy and McCallum (2001) put

it: “An example will be selected if it dramatically reinforces the learner’s existing belief

over unlabeled examples for which it is currently unsure.” While it may seem this could

cause a self-reinforcing effect, with the model selecting points that are already probable

under the current model, this behavior is prevented by calculating the outer sum (over M)

over the pool set, which by definition, are points that have not yet been used for training.

Despite the aggressive approximations used above, the above AF is still computationally

expensive as it requires the model be re-trained J times for one evaluation of the AF. Roy

and McCallum (2001) get around this problem by using naive Bayes classifiers that can be

built using one-pass sufficient statistics. Thus, ‘re-training’ simply requires the sufficient

statistics be changed by one count.

Uncertainty Sampling Now that we have covered an optimal (but unrealizable) AF,

we turn to simpler alternatives. A very popular approach to constructing AFs is known as

uncertainty sampling, which simply takes the point from the pool set for which the model

is most uncertain. One way of quantifying this uncertainty is through the entropy of the

current model:

x∗ = arg max
x∈X tp

A(x;θt)

= arg max
x∈X tp

H [p(y|x,θt)]

= arg max
x∈X tp

−
∫
y

p(y|x,θt) · log p(y|x,θt) dy.

17

An often-competitive alternative is to simply look for the predictive distribution with the

least-confident mode:

x∗ = arg max
x∈X tp

A(x;θt)

= arg max
x∈X tp

1 − max
y∈Y

p(y|x,θt).

For binary models, recall that both their entropy and modal probability are maximized at

p(y|x,θt) = 0.5. So for logistic regression, the logistic function equals 0.5 when its input is

0, and thus uncertainty sampling looks for the point in the pool set that is closest to the

decision boundary of the current model.

Query-by-Committee Another well known AF construction is Query-by-Committee

(QC). This method uses a C-sized ensemble of models to perform AL: p(y|x,θ1,t), . . . , p(y|x,θC,t).
The standard AF then checks for disagreement across these models, e.g. in a pair-wise fash-

ion:

A(x;θ1,t, . . . ,θC,t) =

C∑
c=1

∑
j 6=c

disagreement [p(y|x,θc,t) || p(y|x,θj,t)]

where p(y|x,θc,t) and p(y|x,θj,t) are two ensemble different models. Higher-order compar-

isons are possible but become expensive. For implementing the disagreement function, one

simple procedures is to compare the top-ranked predictions:

A(x;θ1,t, . . . ,θC,t) =

C∑
c=1

∑
j 6=c

I [ŷc 6= ŷj]

where ŷc = arg maxy∈Y p(y|x,θc,t), the prediction from the cth model and I is an indicator

function equal to one when its argument is true. Another example would be to compare

the models via some statistical divergence function. Like uncertainty sampling, QC is also

computing a notion of uncertainty but across an ensemble, not just via one model.

Bayesian Active Learning by Disagreement For a Bayesian predictive model, the

most popular approach at AL is known as Bayesian active learning by disagreement (BALD)

(MacKay, 1992; Houlsby et al., 2011). For a model

y ∼ p(y|x,θ), θ ∼ p(θ),

where p(θ) is the prior, the BALD AF is the mutual information between the parameters

and labels, i.e.:

A(x;Dt) = I[y,θ|x,Dt]

=

∫
θ

∑
y

p(y|x,θ)p(θ|Dt) log
p(y|x,θ)p(θ|Dt)
p(y|x,Dt) p(θ|Dt)

dθ

=

∫
θ

∑
y

p(y|x,θ)p(θ|Dt) log
p(y|x,θ)

p(y|x,Dt)
dθ

= Eθ|DtKLD [p(y|x,θ) || p(y|x,Dt)] ,

18

which, as seen above, can be written as the KL divergence between the likelihood and

predictive distribution, averaged over the posterior distribution. However, Houlsby et al.

(2011) recommend working with an equivalent formulation, written in terms of entropy:

A(x;Dt) = I[y,θ|x,Dt]

= H [p(y|x,Dt)] − Eθ|Dt [H [p(y|x,θ)]]

where the first term is the entropy of the posterior predictive distribution and the second

term is the expected entropy of the likelihood, with the expectation taken over the posterior.

The intuition behind this AF is that it will be maximized by the feature vector yielding the

most marginal uncertainty (high-entropy posterior predictive) but for which the likelihood

demonstrates certainty (low entropy) for any given setting of the parameters. Or as Houlsby

et al. (2011) say: it “seek[s] the x for which the parameters under the posterior disagree

about the outcome the most,”—hence the word disagreement in the name BALD.

Batch Active Learning While AL that acquires single points greedily can be near-

optimal in certain cases (Golovin and Krause, 2011; Dasgupta, 2005), it becomes severely

limited in large-scale settings. One reason is the burden of re-training the model after

every acquired data point: re-training a deep neural networks thousands of times is clearly

impractical. Even if computation was not a concern, adding just one single point to the

labeled set will often result in a negligible change to the updated parameters (Sener and

Savarese, 2018). Moreover, since changes in the model will be small, subsequent AL steps

will result in acquiring very similar points.

Due to these limitations of single-point acquisition, there is wide interest in batch AL

methodologies. Given a maximum batch size of B, we can write the batch AL AF as:

X∗ = arg max
{xb}Bb=1∈X tp

A (x1, . . . ,xB ;θt) , (38)

where X∗ = {x∗1, . . . ,x∗B} are the B points that maximize the joint AF A (x1, . . . ,xB ;θt).

Unsurprisingly, this general formulation of batch AL is quite challenging, as it is a combi-

natorial optimization problem that requires checking the AF for all B-sized subsets of the

pool set. Often a greedy approximation is made in which the AF is assumed to decompose

point-wise:

A (x1, . . . ,xB ;θt) ≈
B∑
b=1

A (xb;θt) . (39)

This approximation is comparatively easy to implement: compute the AF for each point in

the pool set and choose the B points who have the highest values of their AF. However,

such naive batch construction methods still result in highly correlated queries Sener and

Savarese (2018). We demonstrate this in Figure 1, where Subfigure (a) shows a the batch

(black dots) collected by maximizing point-wise entropy and Subfigure (b) shows a batch

collected by point-wise BALD. On the other hand, Subfigure (c) shows a batch AL method

(Pinsler et al., 2019) that does encourage diversity across the batch. See Kirsch et al. (2019)

for a batch AL extension of BALD.

19

(a) Entropy (b) BALD (c) Bayesian Coreset

Figure 1: Batch construction of different AL methods on cifar10, shown as a t-SNE projec-
tion (Maaten and Hinton, 2008). Given 5000 labeled points (colored by class), a batch of
200 points (black crosses) is queried.

Active Learning with Noisy Labels So far we have assumed that an oracle mechanism

exists that can provide the true label y∗. As discussed in the previous section on crowd-

sourcing, such a mechanism does not always—and usually does not—exist. Thus, at each

acquisition step, we may be provided with one or more noisy labels: y1, . . . , yL, where L

is the number of annotators. Thus this situation would require marrying the consensus-

making techniques from crowdsourcing with the AL loop. This synthesis can be done most

simply by using a naive aggregation mechanism over the labels, such as majority voting.

In this case, the label with the most votes would then be added to the label set as the

ground-truth. On the other hand, if we are using a more sophisticated model from Section

2, the first step would be to update the label model p(y|·). Then the updated posterior over

the truth, p(t|y), can be used in several ways. One would be to take the mode of p(t|y) and

use that as y∗. Note that one major departure from the usual AL framework is that, in

the case of noisy labelers, we are learning more about the label noise at every AL iteration,

and thus we may want to use the new observations to update the truth inference for points

obtained during previous iterations. In other words, the labeled set Dt—which we usually

assume is fixed except for the newly collected point / batch—can have arbitrary changes

over time, driven by the updated model of label noise. If obtaining the labels is especially

costly, we may want to go a step further and only query one of multiple labelers for each

AL iteration. This is the setting considered and addressed by Yan et al. (2011). They use

the conditional label model pl(yl|x, t) from Yan et al. (2010) to query the (estimated) best

labeler at each AL step.

3 Imitation Learning

Imitation learning (IL) is a variant of RL in which the reward function (R) is unknown, and

instead, observations of human behavior are provided instead. It is assumed that this human

behavior is drawn from a policy that is nearly (but not exactly) optimal under the unknown

reward function. Below I describe variants of IL, including reductions to supervised learning

and ones that allow multiple human queries.

20

3.1 Behavior Cloning

Behavior cloning (BC) is the simplest of IL strategies, essentially reducing the problem to

that of traditional supervised learning. BC assumes access to a data set:

D = {(sn, an)}Nn=1 , at ∼ πE(a|st) (40)

where πE is the human expert’s policy. These state-action pairs do not have to be sequential

in time. BC then fits a policy πθ(a|s) to this dataset using traditional supervised learning:

θ̂ = arg min
θ∈Θ

N∑
n=1

` (an, πθ(·|sn)) (41)

where ` is a suitable loss function that quantifies the distance between the expert’s action

and the one suggested by the policy. For example, one could use maximum likelihood

estimation:

θ̂ = arg min
θ∈Θ

Es [KLD [πE(a|s) || πθ(a|s)]] ≈ arg max
θ∈Θ

N∑
n=1

log πθ(an|sn) + const.

Notice that the expectation over states is defined by the expert interacting with the environment—

not the policy we aim to learn—this is a problem in that our policy is disconnected with the

underlying MDP. Thus, while easy to implement, BC suffers from some obvious limitations:

• Training the policy is disconnected from the underlying MDP. In other words, the

policy never ‘sees’ states that are generated by itself.

• The efficacy of BC depends on having excellent coverage of the state space.

• The policy could have good supervised learning performance, but this does not guar-

antee good performance under the MDP. In fact, theory has shown that supervised

learning error can be small, but the policy still has quadratic error w.r.t. the reward.

Hence, BC seems best suited for fine-tuning policies that are already quite performant.

We can quantify BC’s sub-optimality as follows. Assume that supervised learning has

succeeded such that the optimal policy and the learned policy agree in their top-ranked

action with high probability:

Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]]

= P (π∗ 6= π̂|s) ≤ ε (42)

where ε is a small non-negative constant ε ∈ R≥0 and the expectation is taken w.r.t. π∗’s

stationary distribution over states. We are then interested in the difference in value functions

under the optimal and learned policies, which can be founded as follows:

21

Proposition 3.1. Assume a normalized reward function rt ∈ [−1, 1] and both poli-

cies are deterministic such that they choose the top-ranked action. Moreover, assume

that P (π∗ 6= π̂|s) ≤ ε for ε ∈ R≥0. The difference in value functions is then:

V π
∗
(s) − V π̂(s) ≤ 2

(1− γ)2
· ε

where γ ∈ [0, 1) is the discount factor.

The upper bound is linear in the supervised learning error ε but quadratic in the discount,

meaning that the more future rewards are considered (i.e. γ closer to one), the worse the

performance gap will be when the policy is deployed in the MDP. Thus we can say 2/(1−γ)2

‘amplifies’ the supervised learning error ε.

Before going to the proof, first note that the maximum value of the value function is

when the reward is maximized at one at every state:
∑∞
t=1 γ

trt =
∑∞
t=1 γ

t = 1/(1 − γ),

where the infinite series converges due to it being a standard geometric series. Similarly, the

value functions can take a minimum of −1/(1− γ). Thus 2/(1− γ) ≥ V π
∗
(s)− V π̂(s) ≥ 0

and so we’d like an upper bound that’s a function of ε. The proof is then:

V π
∗
(s)− V π̂(s) =

1

1− γ
· Es∼d(π∗)

[
Aπ̂(s, arg max

a∈A
π∗(a|s))

]
=

1

1− γ
· Es∼d(π∗)

[
Qπ̂(s, arg max

a∈A
π∗(a|s)) − V π̂(s)

]
=

1

1− γ
· Es∼d(π∗)

[
Qπ̂(s, arg max

a∈A
π∗(a|s))−

∑
a′∈A

I[a′ = arg max
a∈A

π̂(a|s)] ·Qπ̂(s, a′)

]

=
1

1− γ
· Es∼d(π∗)

[
Qπ̂(s, arg max

a∈A
π∗(a|s))−Qπ̂(s, arg max

a∈A
π̂(a|s))

]
≤ 1

1− γ
· Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]
· 2

1− γ

+ I
[
arg max
a∈A

π∗(a|s) = arg max
a∈A

π̂(a|s)
]
· 0
]

=
1

1− γ
· Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]
· 2

1− γ

]
=

1

1− γ
· 2

1− γ
· Es∼d(π∗)

[
I
[
arg max
a∈A

π∗(a|s) 6= arg max
a∈A

π̂(a|s)
]]

=
1

1− γ
· 2

1− γ
· ε

=
2

(1− γ)2
· ε.

where the first identify is the performance difference lemma. The upper-bound created in

the fifth line arises from the fact that if the policies choose the same actions (π∗ = π), then

the difference in the Q-functions is zero. Otherwise, we assume the difference is maximal at

2/(1 − γ). This then reduces the problem into the probability of the policies being equal,

which we have already defined to be ε. Perhaps a tighter bound exists by making a stronger

assumption than that the difference in returns will be less than maximal.

22

3.2 Policy Learning via an Interactive Demonstrator

Policy Learning via an Interactive Demonstrator (PLID) is an extension of Behavior Cloning

that allows the expert to be queried multiple times. Again we start with a set of demon-

strations:

D0 = {(s0,n, a0,n)}Nn=1 , a0,t ∼ πE(a|s0,t). (43)

Moreover, assume that we have used BC to fit a policy pi0(a|s) to D0. PLID then proceeds

with the following loop:

1. For m = [1,M]:

2. Rollout πm−1(a|s) to collect a sequence of states {sm,n}Nn=1.

3. Query expert to gather corresponding actions for the observed states:

Dm = {(sm,n, am,n)}Nn=1 , am,t ∼ πE(a|sm,t).

4. Apply BC to fit a policy πm(a|s) to D0:m = D0 ∪ . . . ∪ Dm.

The PLID formulation above is known as DAGGER (Ross et al., 2011), as it aggregates the

data collected from each loop. Alternatively, policies could be trained individually at each

loop and then some form of model fusion performed. This is a better approach when Dm is

large such that re-training on the combined data set takes a long time.

PLID solves BC’s problems of being disconnected from sequential decision making (by

rolling out the current policy at step #2) and possibly having limited state coverage (by

re-querying the expert). We can see this explicitly by considering the behavior cloning

objective after one step of interactive demonstration:

θ̂1 = arg min
θ∈Θ

Es∼π0
[KLD [πE(a|s) || πθ0

(a|s)]] ≈ arg max
θ∈Θ

N∑
n=1

log πθ0
(an|sn) + const.

Unlike above, where the expectation over states was under rollouts of the expert’s policy,

here they are states obtained by rolling out π0 (the policy we’re learning). This comes at the

price, of course, of needing much more participation and effort from the expert. Moreover,

if the state-space is continuous, it may be difficult for the expert to provide a demonstration

exactly at the state found during the rollout. Imagine the case of finding a policy for driving

a car: the car’s position and the exact configuration of the controls must re-created and the

expert thrust into the task of driving at that exact instant.

3.3 Distribution Matching

Distribution matching (DM) aims to solve BC’s problems (namely, disconnection from se-

quential decision making / the underlying MDP) while not having PLID’s limitation of

intensive expert supervision. The key insight that differentiates DM is to consider the

joint distribution over actions and states, instead of just the conditional distribution of ac-

tions given states. Call a T -length sequence of states an actions a trajectory, denoted as

23

τ = (s0, a1, s1, . . . , aT , sT), and consider a distribution over trajectories:

pπ(τ) = p(s0)

T∏
t=1

π(at|st−1) P(st|st−1, at) (44)

where π is a policy and P(st+1|st, at) is the MDP’s transition probability. Let the proba-

bility of a trajectory under the model be denoted pπ(θ)(τ) and the expert demonstrator’s

distribution be denoted pE(τ). We will not have an exact analytical form for pE(τ); rather

we see only samples

D = {(sn,0, an,1, sn,1, . . . , an,T , sn,T)}Nn=1 , aj,t ∼ πE(a|sj,t), sj,t+1 ∼ P(st+1|sj,t, aj,t),

with the expert’s policy πE(a|s) again being assumed to be near optimal.

Figure 2: Imitation learning can fail when the target policy is multi-modal and the learned
policy is not sufficiently expressive to cover multiple modes. Image reproduced from Ke
et al. (2021).

Divergence Function Consider fitting a policy πθ by defining a divergence function

that measures a notion of distance or dissimilarity between the model’s distribution over

trajectories and the expert’s:

D
[
pπ(θ)(τ) || pE(τ)

]
.

Specifically, Englert et al. (2013) proposes the Kullback–Leibler divergence:

KLD
[
pE(τ) || pπ(θ)(τ)

]
=

∑
τ∈(S×A)T

pE(τ) log
pE(τ)

pπ(θ)(τ)

≈
N∑
n=1

− log pπ(θ)(τn) + const.

(45)

where the second line corresponds to the negative log-likelihood computed under N samples.

This formulation can be thought of as similar to BC (with a log-likelihood objective) but

different in that the distribution over states is modeled as well as the conditional distribution

over actions. However, sampling whole trajectories can be statistically difficult (for large

24

T), and thus a factorization over state-action pairs is often assumed (Englert et al., 2013):

KLD
[
pE(τ) || pπ(θ)(τ)

]
≈

T∑
t=1

KLD
[
pE(st, at) || pπ(θ)(st, at)

]
≈

N∑
n=1

T∑
t=1

−{log πθ (an,t|sn,t−1) + log qθ (sn,t)} + const.

(46)

where qθ is a marginal distribution over states. We can think of this objective as a form

of regularized BC, as we don’t just want to fit the policy but also a regularizer that en-

sures the distribution over states matches that of the expert’s trajectories. Despite the

success of the above formulation, Ke et al. (2021) point out a general limitation in using

the Kullback–Leibler divergence from expert to model, as pπ will be forced to place sup-

port everywhere that pE does, and if our model is not sufficiently expressive, then we will

learn solutions that try to interpolate across modes but capture none of them. Figure ??

demonstrates this problem: due to the unimodal distribution’s need to cover both modes,

the model tries to satisfy both modes, which causes the car to crash directly into the thing it

was trying to avoid. One may then wish to turn to the reverse KLD, which is mode seeking

since the expectation is now taken w.r.t. pπ(θ):

KLD
[
pπ(θ)(τ) || pE(τ)

]
=

∑
τ∈(S×A)T

pπ(θ)(τ) log
pπ(θ)(τ)

pE(τ)
. (47)

However, this objective is hard to optimize due to needing to evaluate probability density /

mass for pπ and pE—the latter of which we only can observe through samples.

Adversarial Imitation Learning Generative Adversarial Imitation Learning (GAIL)—

inspired by the similarly named Generative Adversarial Networks (GANs)—are one scalable

approach to estimate high-dimensional, mode-seeking divergences. They operate by chang-

ing the problem to one of two-sample testing: given samples from the model τj ∼ pπ and

expert τn ∼ pE , can a binary classifier correctly predict the source of each?

Jψ
(
pπ(θ), pE

)
= EE [− log h (τ;ψ)] + Eπ [− log(1− h (τ;ψ))]

≈

(
1

N

N∑
n=1

− log h (τn;ψ)

)
+

 1

J

J∑
j=1

− log(1− h (τj ;ψ))

 (48)

where h (τ ;ψ) : τ 7→ (0, 1) represents the binary classifier. Jψ will be minimized when

the model’s and expert’s sample trajectories are perfectly discriminated. GAIL can also be

formulated over state-action pairs, if full trajectories are too challenging, as done above:

≈

(
1

N

N∑
n=1

T∑
t=1

− log h (sn,t, an,t;ψ)

)
+

 1

J

J∑
j=1

T∑
t=1

− log(1− h (sj,t, aj,t;ψ))

 . (49)

With the adversarial objective in hand, we can use it to optimize the policy πθ by an

adversarial max-min problem where the classifier seeks to minimize the classification loss

while the policy seeks to maximize it (so that the samples look to be from indistinguishable

25

sources):

(θ∗,ψ∗) = arg max
θ

arg min
ψ

Jψ
(
pπ(θ), pE

)
. (50)

The optimal discriminator ψ∗ satisfies:

log h (τ;ψ∗) − log (1− h (τ;ψ∗)) = log
pE(τ)

pπ(θ)(τ)
, (51)

and hopefully the ratio pE(τ)/pπ(θ∗)(τ) ≈ 1, meaning that the distributions have been

successfully matched. In summary, GAIL is an attractive method as it does not require any

instantiation of a density / mass function and can operate solely using samples from the

expert and policy (i.e. rollouts). This comes at some cost to sample efficiency and a more

difficult optimization problem, but those tradeoffs seem to not be a limitation in practice.

3.4 Inverse Reinforcement Learning

Inverse RL (IRL) aims to learn the reward function from expert demonstrations. Hence the

term inverse since RL usually assumes the reward function is given. A policy is learned as

well, using the learned reward function. Thus, learning both functions could be a challenge,

but IRL assumes that learning the reward function is statistically easier than learning the

policy. Specifically, we assume the reward is a parameterized function: R(st) ≈ Rφ(st)

where φ are the parameters of the model used to learn the reward function. For simplicity,

we assume the reward is only a function of the current state. Now the RL optimization

objective is a function of both the policy’s parameters (θ) and reward model’s (φ):

J (θ,φ) =
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) · Eπ(θ) [Gφ (st; {at, at+1, . . .}) | st = s, at = a]

=
∑
s∈S

dπ(θ)(s)
∑
a∈A

πθ(a|s) · Eπ(θ)

[∞∑
t′=1

γt′ ·Rφ (st+t′) | st = s, at = a

]
.

(52)

As we will see below, solving this difficult optimization problem will require assuming some

constraints on the policy and/or reward function. Yet in general, IRL follows the algorithmic

sketch below.

1. Fit Rφ to the expert demonstrations.

2. Given Rφ, fit πθ using traditional RL.

3. Compare πθ vs πE , the model and expert policies.

4. If the difference in policies is sufficiently large, repeat the loop.

This sketch should make clear that IRL can be computationally expensive, since traditional

RL is an inner loop of the procedure. Yet we must pay some price for training under a

sequential setting and not assuming repeated queries to the human.

Linear Reward Function Let’s start simple, by considering a linear reward function:

Rφ(s) = φ>ψ(s)

26

where φ ∈ RD, such that |φ|1 ≤ 1, are the parameters and ψ : S 7→ [0, 1]D is a binary

vector of features that describes state s. Under this assumption, the value function is also

linear:

V π(s) = Eπ [G (st; {at, at+1, . . .}) | st = s]

= Eπ

[∞∑
t′=1

γt′ ·Rφ (st+t′) | st = s

]

= Eπ

[∞∑
t′=1

γt′ ·φ>ψ (st+t′) | st = s

]

= φ> Eπ

[∞∑
t′=1

γt′ ·ψ (st+t′) | st = s

]
︸ ︷︷ ︸

µπ(s)

where µπ is a feature vector quantifying the states expected to be visited under policy π. For

the expert, we see a finite set of states and thus can compute the demonstrator’s empirical

embedding as:

µE =
1

N

N∑
n=1

∞∑
t′=1

γt′ ·ψ (sn,t′) .

Writing the IRL objective from Equation 52, we have:

J (θ,φ) =
∑
s∈S

dπ(θ)(s) · V π(s)

=
∑
s∈S

dπ(θ)(s) φ> Eπ

[∞∑
t′=1

γt′ ·ψ (st+t′) | st = s

]

= φ>
∑
s∈S

dπ(θ)(s) Eπ

[∞∑
t′=1

γt′ ·ψ (st+t′) | st = s

]
= φ>

∑
s∈S

dπ(θ)(s) µπ (s)

= φ> Ed(s;θ) [µπ (s)]

(53)

We can then consider the difference between the objective achieved by the expert and model:

L(φ) = | J (θ∗E ,φ) − J (θ,φ) |

=
∣∣∣ φ> µE − φ> Ed(s;θ) [µπ (s)]

∣∣∣
≤
∣∣∣∣ µE − Ed(s;θ) [µπ (s)]

∣∣∣∣2
2

(54)

where the inequality arises from the assumption that |φ|1 is bounded. Firstly, this in-

equality demonstrates a fundamental connection to distribution matching, as under these

assumptions, matching the first moment of the state features upper-bounds L(φ). Thus,

minimizing the difference between the expected state features (i.e. moment matching) will

minimize the gap in between the expert’s and model’s objectives J , for any choice of φ.

However, simply examining the state distribution neglects learning φ, and in turn, ob-

taining a form for the reward function. One could question why a form for the reward is

27

even needed, if obtaining the policy simply by distribution matching will do, but if it is,

then φ can be obtained as follows. Abbeel and Ng (2004) propose an iterative max-margin

approach that first fits φ, runs RL to find θ, and repeats. Yet a more general approach was

proposed by Syed and Schapire (2007) based on an adversarial game:

θ∗ = arg max
θ

min
φ

(
φ> Ed(s;θ) [µπ (s)] − φ> µE

)
. (55)

The intuition is that, for a fixed reward (i.e. given θ), the policy can be chosen so that the

model achieves a better reward than the expert achieved. However, the environment is then

free to change the reward in order to minimize the quantity, thus choosing in favor of the

expert. This bares some similarity to GAIL, with φ acting in the spirit of the discriminator.

Yet, of course, now the ‘discriminator’ has the interpretation as a reward function.

Another approach to IRL of note is maximum entropy inverse reinforcement learning

(MaxEnt IRL). This approach provides a more explicit bridge between distribution matching

and previous IRL approach. Let the state features for one of the expert’s trajectories be

denoted µE,n =
∑
t′=1 γt′ · ψ(sn,t′), such that µE = (1/N)

∑
n µE,n. MaxEnt IRL then

models the probability of a trajectory by exponentiating the linear reward model from above:

p (τn;φ) =
1

Z(φ)
exp

{
φ>µE,n

}
, Z(φ) =

∫
τ∈(S,A)T

exp
{
φ>µτ

}
dτ (56)

where Z(φ) is known as the partition function (or normalizing constant) that ensures the

probability is normalized by computing the exponentiated reward over all possible states.

Now consider optimizing φ via gradient ascent of the log-likelihood under the expert’s

demonstrations. The gradient calculation is:

∇φ
1

N

N∑
n=1

log p (τn;φ) =
1

N
∇φ

N∑
n=1

[
φ>µE,n − logZ(φ)

]
=

1

N

N∑
n=1

∇φ
[
φ>µE,n

]
− N

N
∇φ logZ(φ)

=
1

N

N∑
n=1

µE,n −
1

Z(φ)

∫
τ∈(S,A)T

∇φ exp
{
φ>µτ

}
dτ

= µE −
1

Z(φ)

∫
τ∈(S,A)T

exp
{
φ>µτ

}
µτ dτ

= µE −
∫
τ∈(S,A)T

p (τ ;φ) µτ dτ

= µE − Eτ|φ [µτ]

(57)

where µE is the expert’s state features (over all trajectories) and Eτ|φ [µτ] is the expected

state features under p (τ;φ). Note the similarity to the upper-bound above where the

expert’s and policy’s expected features are matched.

Yet also note that no policy has been introduced here. To parameterize a policy, MaxEnt

IRL now assumes the following implied policy: π(a|s) ∝ Qπ(s, a), which is simply the policy

that chooses actions with probability proportional to their expected return. Now consider

that p (τ;φ) also places high probability on states with the highest rewards. Thus the

28

contribution of the partition function in the gradient is approximated with a policy as:

Eτ|φ [µτ] ≈ Ed(s;θ) [µπ (s)] (58)

where the RHS term is the expected state features under policy πθ(a|s). Mechanistically,

this is doing the correct thing as the gradient will be zero when Ed(s;θ) [µπ (s)] and µE have

been matched, i.e. their difference is zero. The full gradient update can be computed as:

φt+1 = φt + α ·
(
µE − Ed(s;θt) [µπ (s)]

)
where θt is obtained by running RL using the reward function Rφt(s) = φ>t ψ(s).

3.5 Reinforcement Learning with Human Feedback

Reinforcement Learning with Human Feedback (RLHF) (Christiano et al., 2017) is a form

of IRL that has been made popular by its success in finetuning ChatGPT. Like previous

methods, its core goal is to (i) learning a reward function from human demonstrations, and

then (2) train (or more often, finetune an already trained model) using the learned reward

function as the learning signal. Unlike previous imitation learning strategies discussed above,

RLHF assumes we have access to ranked or paired demonstrations:

D+,− =
{(
τ+
n , τ

−
n

)}N
n=1

where τ+
n is a positive trajectory (i.e. a sequences of states and actions) that has been

deemed by a human to encode more desirable behavior than the negative trajectory τ−n .

These trajectory pairs could be describing a similar state in the environment or could simply

be randomly paired by have two large batches of positive and negative demonstrations.

Given these ranked trajectories, the next step is to define a reward model Rφ : T 7→ R≥0

with parameters φ. We then define a Bradley-Terry model (Bradley and Terry, 1952) that

encodes the probability of one trajectory being better than another, as a function of the

reward model:

pφ(τ+ � τ−) = σ
(
R
(
τ+;φ

)
− R

(
τ−;φ

))
(59)

where σ(·) denotes the logistic function. Thus we see that the probability of one trajectory

being preferable over another is simply the difference in their reward functions normalized

to (0, 1). Using this model, we can then define likelihood of the reward parameters φ:

` (φ;D+,−) = log

{
N∏
n=1

pφ(τ+
n � τ−n)

}

=

N∑
n=1

log pφ(τ+
n � τ−n)

=

N∑
n=1

log σ
(
R
(
τ+
n ;φ

)
− R

(
τ−n ;φ

))
.

Usually the reward function is taken to be a neural network of some form and ` (φ;D+,−)

is optimized with gradient ascent. After the reward model is fit, then R (τ+
n ;φ) can be

29

plugged into any suitable RL framework to learn a policy.

Difference from Traditional Inverse RL Notice that this setup is much simpler than

the inverse RL formulations above, which usually require additional assumptions about the

form of the reward function or how it can be learned in tandem with a policy. In other words,

before we only has positive demonstrations and thus couldn’t train a reward function on

them directly since it has no exampled of what negative behaviors might look like. One had

to assume that roughly everything not in the demonstration set was a negative behavior.

Here have positive and negative trajectories allows the reward model to see both extremes

and thus be learned directly without an inner-loop of RL / policy fitting.

Why won’t Behavior Cloning suffice? Given that we have demonstrations from re-

liable humans, it is tempting to also consider a behavior cloning objective that uses both

positive and negative examples:

θ̂ = arg min
θ∈Θ

Eτ−
[
log πθ(a−|s−)

]
− Eτ+

[
log πθ(a+|s+)

]
(60)

where this objective aims to directly maximize the probability of the positive trajectories

while minimizing the probability of the negative trajectories under the policy. This could

work in the usual cases in which BC succeeds (such as a small state space). Yet, especially

in domains such as language in which there are multiple equivalent solutions, interacting

with the underlying MDP allows a policy to discover these symmetries instead of overfitting

to precisely what’s given in the positive demonstrations.

Direct Preference Optimization One method that bridges RLHF and behavior cloning

is direct preference optimization (DPO) (Rafailov et al., 2023). It works as follows. Firstly,

they notice that in RLHF, the final policy is usually trained with a regularized objective,

to keep the final policy near the initial (assuming some good scheme exists for pre-training

the policy, like next-token modeling with language):

θ∗ = arg max
θ∈Θ

Eτ∼πθ
[R (τ;φ) − KLD [πθ(a|s)||π0(a|s)]] .

Under this optimization problem, the optimal policy has the form:

π∗(a|s) = π0(a|s) · 1

Z(φ)
· exp {R (τ;φ)} , Z(φ) =

∑
τ∈T

exp {R (τ ;φ)}
∑

(s,a)∈τ

π0(a|s).

Solving for the reward function (outside of Z(φ)), we then have:

R (τ;φ) =
∑

(s,a)∈τ

log
π∗(a|s)
π0(a|s)

+ logZ(φ).

30

Plugging in this form for the reward function into the Bradley-Terry model, we have:

pφ(τ+ � τ−) = σ
(
R
(
τ+;φ

)
− R

(
τ−;φ

))
= σ

 ∑
(s+,a+)∈τ+

log
π∗(a+|s+)

π0(a+|s+)
+ logZ(φ) −

∑
(s−,a−)∈τ−

log
π∗(a−|s−)

π0(a−|s−)
− logZ(φ)


= σ

 ∑
(s+,a+)∈τ+

log
π∗(a+|s+)

π0(a+|s+)
−

∑
(s−,a−)∈τ−

log
π∗(a−|s−)

π0(a−|s−)

 .

(61)

where the difficult-to-compute term Z(φ) cancels out. This equation is in terms of the

optimal policy π∗ for a specific (implied) reward model R (τ+;φ), but we can instead

directly parameterize the policy to devise a learning objective that by-passes learning a

reward function as an intermediate step:

` (θ;D+,−) =

N∑
n=1

log p(τ+
n � τ−n)

=

N∑
n=1

log σ

 ∑
(s+,a+)∈τ+

n

log
πθ(a+|s+)

π0(a+|s+)
−

∑
(s−,a−)∈τ−n

log
πθ(a−|s−)

π0(a−|s−)

 .

Removing the pre-trained policy π0, we have:

` (θ;D+,−) =

N∑
n=1

log σ

 ∑
(s+,a+)∈τ+

n

log πθ(a+|s+) −
∑

(s−,a−)∈τ−n

log πθ(a−|s−)

 .

Going back to the behavior cloning approach in Equation 60, we see that these objectives

are very similar, and the only material difference is that DPO wraps the policy terms inside

the logsistic function. We can get a better understanding of the mechanics by looking at

the gradient:

∇θ` (θ;D+,−) =

N∑
n=1

(1− p(τ+
n � τ−n))

 ∑
(s+,a+)∈τ+

n

∇θ log πθ(a+|s+) −
∑

(s−,a−)∈τ−n

∇θ log πθ(a−|s−)

 ,
and thus we see the gradient of the difference in the policies is weighted by one minus the

probability of the positive trajectory being preferred. Thus the policy is updated only when

the implied reward model has the incorrect preference and cannot continue to optimize the

policy forever to overfit on the positive trajectory. This is experimentally confirmed by

Rafailov et al. (2023), as their experiments show the model does not perform well without

the (1− p(τ+
n � τ−n)) term.

Bibliography

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1,

31

2004.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs:

I. the method of paired comparisons. Biometrika, 39:324, 1952. URL https://api.

semanticscholar.org/CorpusID:125209808.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.

Deep reinforcement learning from human preferences. Advances in neural information

processing systems, 30, 2017.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural

Information Processing Systems, pages 337–344, 2005.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer

error-rates using the em algorithm. Journal of the Royal Statistical Society: Series C

(Applied Statistics), 28(1):20–28, 1979.

Peter Englert, Alexandros Paraschos, Jan Peters, and Marc Peter Deisenroth. Model-based

imitation learning by probabilistic trajectory matching. In 2013 IEEE international con-

ference on robotics and automation, pages 1922–1927. IEEE, 2013.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in

active learning and stochastic optimization. Journal of Artificial Intelligence Research,

42:427–486, 2011.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active

learning for classification and preference learning. arXiv Preprint arXiv:1112.5745, 2011.

Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement

learning. In International Conference on Machine Learning, 2002.

Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha

Srinivasa. Imitation learning as f-divergence minimization. In Algorithmic Foundations

of Robotics XIV: Proceedings of the Fourteenth Workshop on the Algorithmic Foundations

of Robotics 14, pages 313–329. Springer, 2021.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. BatchBALD: Efficient and diverse

batch acquisition for deep Bayesian active learning. arXiv preprint arXiv:1906.08158,

2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of

Machine Learning Research, 9(Nov):2579–2605, 2008.

David JC MacKay. Information-based objective functions for active data selection. Neural

computation, 4(4):590–604, 1992.

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato.

Bayesian batch active learning as sparse subset approximation. Advances in neural infor-

mation processing systems, 32, 2019.

32

https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and

Chelsea Finn. Direct preference optimization: Your language model is secretly a reward

model. Neural Information Processing Systems, 2023.

Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles Florin,

Luca Bogoni, and Linda Moy. Learning from crowds. Journal of Machine Learning Re-

search, 11(43):1297–1322, 2010. URL http://jmlr.org/papers/v11/raykar10a.html.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning

and structured prediction to no-regret online learning. In Geoffrey Gordon, David Dun-

son, and Miroslav Dud́ık, editors, Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning

Research, pages 627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through sampling

estimation of error reduction. In Proceedings of the Eighteenth International Conference

on Machine Learning, pages 441–448, 2001.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-

set approach. In International Conference on Learning Representations, 2018.

Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 6(1):1–114, 2012.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning.

Advances in neural information processing systems, 20, 2007.

Yan Yan, Romer Rosales, Glenn Fung, Mark Schmidt, Gerardo Hermosillo, Luca Bogoni,

Linda Moy, and Jennifer Dy. Modeling annotator expertise: Learning when everybody

knows a bit of something. In Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, 2010.

Yan Yan, Glenn M Fung, Rómer Rosales, and Jennifer G Dy. Active learning from crowds.

In Proceedings of the 28th international conference on machine learning (ICML-11), pages

1161–1168, 2011.

33

http://jmlr.org/papers/v11/raykar10a.html

	Background
	Supervised Learning
	Reinforcement Learning

	Supervised Learning from Human-Generated Labels
	Pooled: Multinomial Model
	Unpooled: Dawid-Skene Model
	Jointly Learning Ground-Truth and a Predictive Model
	Active Learning

	Imitation Learning
	Behavior Cloning
	Policy Learning via an Interactive Demonstrator
	Distribution Matching
	Inverse Reinforcement Learning
	Reinforcement Learning with Human Feedback

