Learning to Defer to One, Multiple, or a Population of Expert(s)

Eric Nalisnick

Johns Hopkins University

DECISION POINT

Google's medical AI was super accurate in a lab. Real life was a different story.

If AI is really going to ma works when real human

Medscape Tuesday, December 13, 2022

DRUGS & DISEASES

News > Medscape Medical News > Conference News > CHEST 2022

Sepsis Predictor Tool Falls Short in Emergency Setting

CME & EDUCATION

ACADEMY

Heidi Splete October 17, 2022

NEWS & PERSPECTIVE

human-Al collaboration

input features

safe and robust semi-automation via expert handling the hardest cases

safe, gradual automation

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses
 - ⊗ meta-learning a rejector

⊗ single expert

- ⊗ softmax surrogate loss
- improving calibration via one-vs-all

⊗ multiple experts

- ⊗ surrogate losses
- ⊗ conformal sets of experts

⊗ population of experts

- ⊗ surrogate losses

single expert

- ⊗ softmax surrogate loss
- improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

$$\max_{y} p(y \mid x) \leq \tau_0$$
y (constant)

$$\max_{y} p(y \mid x) \leq \tau_0$$
y (constant)

$$\max_{y} p(y \mid x) \leq \frac{\tau_0}{\text{(constant)}}$$

problem?

$$\max_{y} |p(y|x)| \leq \frac{\tau_0}{(\text{constant})}$$

the expert's knowledge is not considered!

allocation mechanism

defer to expert if...

$$\max_{y} |p(y|x)| \leq \tau \left(\sum_{i=1}^{n} \frac{1}{i} \right)$$

defer to expert if...

$$\max_{y} |p(y|x)| \leq \tau \left(\bigcup_{i=1}^{n} \int_{a_i}^{a_i} \int_{a_i}^$$

allocation mechanism

$$L_{0-1}$$

defer to expert if...

$$\max_{y} |p(y|x)| \leq \tau \left(\sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i} \sum_$$

Bayes optimal deferral rule:

$$\max_{y} \mathbb{P}(y \mid x) \leq \mathbb{P}(m = y \mid x)$$
probability that the expert is correct

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

training data

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

model

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

training data

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

model

$$\mathbf{x}$$
 $\boldsymbol{g}_{1}(\mathbf{x})$ $\boldsymbol{g}_{k}(\mathbf{x})$ $\boldsymbol{g}_{K}(\mathbf{x})$ $\boldsymbol{g}_{L}(\mathbf{x})$

training data $\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

model
$$h_i(\mathbf{x}) = \frac{\exp\{g_i(\mathbf{x})\}}{\sum_{k=1}^{K+1} \exp\{g_k(\mathbf{x})\}}$$

training data

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

model
$$h_i(\mathbf{x}) = \frac{\exp\{g_i(\mathbf{x})\}}{\sum_{k=1}^{K+1} \exp\{g_k(\mathbf{x})\}}$$

$$\mathcal{E}(\theta; x, y, m) = -\log h_y(x) - \mathbb{I}[y = m] \cdot \log h_{\perp}(x)$$

training data

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

model
$$\mathbf{h}_i(\mathbf{x}) = \frac{\exp\{\mathbf{g}_i(\mathbf{x})\}}{\sum_{k=1}^{K+1} \exp\{\mathbf{g}_k(\mathbf{x})\}}$$

$$\mathcal{E}(\theta; x, y, m) = -\log h_y(x) - \mathbb{I}[y = m] \cdot \log h_{\perp}(x)$$

training data

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^{N}$$

model
$$\mathbf{h}_i(\mathbf{x}) = \frac{\exp\{\mathbf{g}_i(\mathbf{x})\}}{\sum_{k=1}^{K+1} \exp\{\mathbf{g}_k(\mathbf{x})\}}$$

$$\mathscr{E}(\theta; x, y, m) = -\log h_y(x) - \mathbb{I}[y = m] \cdot \log h_{\perp}(x)$$

training data

$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_n \right\}_{n=1}^N$$

model
$$h_{i}(x) = \frac{\exp\{g_{i}(x)\}}{\sum_{k=1}^{K+1} \exp\{g_{k}(x)\}}$$

$$\mathscr{E}(\theta; x, y, m) = -\log h_y(x) - \mathbb{I}[y = m] \cdot \log h_{\perp}(x)$$

defer to expert if...

$$\max_{y \in [1,K]} h_y(x) \le h_{\perp}(x)$$

single expert

- ⊗ softmax surrogate loss
- improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

$$\hat{p}(m = y | x) \approx \mathbb{P}(m = y | x)$$

$$\hat{p}(m = y | x) \approx \mathbb{P}(m = y | x)$$

- optimal allocation
- ⊗ transparency
- detecting distribution shift (in the expert)

$$\hat{p}(m = y | x) \approx \mathbb{P}(m = y | x)$$

$$\hat{p}(m = y | x) \approx \mathbb{P}(m = y | x)$$

[Proposition 3.1]

[Theorem 4.1] $h_1^*(x) = \mathbb{P}(m = y \mid x)$ $h_k(x)$ $\cdots \mid h_{K}(x)$ $h_{\perp}(x)$ $g_k(x)$ $\cdots \mid g_K(x)$ $g_{\perp}(x)$ $g_1(x)$

estimating expert correctness

skin lesion diagnosis

estimating expert correctness

ĝ

distance: $\hat{\mathbf{p}}$ vs \mathbb{P}

softmax

one-vs-all (ours)

estimating expert correctness

distance: $\hat{\mathbf{p}}$ vs \mathbb{P}

softmax

 26.7 ± 1.8

$$8.0 \pm 1.0$$

But does one-vs-all result in more accurate models?

skin lesion diagnosis

skin lesion diagnosis

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all

⊗ multiple experts

- ⊗ surrogate losses
- ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

use classifier if...

$$\max_{y} \mathbb{P}(y|x) > \\ \mathbb{P}(m_{j} = y|x), \forall j$$

else, pick best expert:

$$\underset{j}{\operatorname{arg\,max}} \ \mathbb{P}\big(\mathsf{m}_j = \mathsf{y} \,|\, \mathsf{x}\big)$$

training data

$$\mathfrak{D} = \left\{ \mathbf{x}_{n}, \mathbf{y}_{n}, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \right\}_{n=1}^{N}$$

training data
$$\mathfrak{D} = \left\{ \mathbf{x}_{n}, \mathbf{y}_{n}, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \right\}_{n=1}^{N}$$

$$\mathfrak{D} = \{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \}_{n=1}^N$$

model

$$h_1(x)$$
 \cdots $h_k(x)$ \cdots $h_K(x)$ $h_{\perp,1}(x)$ \cdots $h_{\perp,J}(x)$

K classes

J experts

$$g_1(x)$$
 \cdots $g_k(x)$ \cdots $g_K(x)$ $g_{\perp,1}(x)$ \cdots $g_{\perp,J}(x)$

training data
$$\mathfrak{D} = \left\{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \right\}_{n=1}^{N}$$

training data
$$\mathfrak{D} = \left\{ \mathbf{x}_{n}, \mathbf{y}_{n}, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \right\}_{n=1}^{N}$$

training data

$$\mathfrak{D} = \{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \}_{n=1}^N$$

model

- ⊗ softmax and one-vs-all variants
- ⊗ both consistent w.r.t. 0-1 loss

training data

$$\mathfrak{D} = \{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \}_{n=1}^N$$

model

- ® softmax and one-vs-all variants
- ⊗ both consistent w.r.t. 0-1 loss

softmax loss function

$$\mathcal{E}(\theta; \mathbf{x}, \mathbf{y}, \mathbf{m}) = -\log h_{\mathbf{y}}(\mathbf{x}) - \sum_{j} \left[\mathbf{y} = \mathbf{m}_{j} \right] \cdot \log h_{\perp, j}(\mathbf{x})$$

training data

$$\mathfrak{D} = \{ \mathbf{x}_n, \mathbf{y}_n, \mathbf{m}_{n,1}, \dots, \mathbf{m}_{n,J} \}_{n=1}^N$$

model

- ® softmax and one-vs-all variants
- ⊗ both consistent w.r.t. 0-1 loss

softmax loss function

$$\mathcal{E}(\theta; \mathbf{x}, \mathbf{y}, \mathbf{m}) = -\log h_{\mathbf{y}}(\mathbf{x}) - \sum_{j} \left[\mathbf{y} = \mathbf{m}_{j} \right] \cdot \log h_{\perp, j}(\mathbf{x})$$

training data

$$\mathfrak{D} = \{x_n, y_n, m_{n,1}, ..., m_{n,J}\}_{n=1}^{N}$$

model

- ⊗ softmax and one-vs-all variants
- ⊗ both consistent w.r.t. 0-1 loss

softmax loss function

$$\mathscr{E}(\theta; \mathbf{x}, \mathbf{y}, \mathbf{m}) = -\log h_{\mathbf{y}}(\mathbf{x}) - \sum_{j} \mathbb{I}\left[\mathbf{y} = \mathbf{m}_{j}\right] \cdot \log h_{\perp, j}(\mathbf{x})$$

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all

⊗ multiple experts

- ⊗ surrogate losses
- ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

assume there's a best expert, j*:

$$\mathbb{P}(\mathsf{m}_{j^*} = \mathsf{y} | \mathsf{x}) > \mathbb{P}(\mathsf{m}_e = \mathsf{y} | \mathsf{x}), \forall e \neq j^*$$

assume there's a best expert, j*:

$$\mathbb{P}(\mathsf{m}_{j^*} = \mathsf{y} \,|\, \mathsf{x}) > \mathbb{P}(\mathsf{m}_e = \mathsf{y} \,|\, \mathsf{x}), \ \forall e \neq j^*$$

construct a confidence set of experts:

$$\mathbb{P}\left(j^* \in C(x)\right) \geq 1 - \alpha$$

assume there's a best expert, j*:

$$\mathbb{P}(\mathsf{m}_{j^*} = \mathsf{y} \,|\, \mathsf{x}) > \mathbb{P}(\mathsf{m}_e = \mathsf{y} \,|\, \mathsf{x}), \ \forall e \neq j^*$$

construct a confidence set of experts:

$$\mathbb{P}\left(j^* \in C(x)\right) \geq 1 - \alpha$$

team of experts: adaptive in size and membership

conformal inference: ensembling

$$C(x) = \left\{ \begin{array}{c} \\ \\ \\ \end{array}, \begin{array}{c} \\ \\ \end{array} \right\}$$

conformal inference: ensembling

conformal inference: ensembling

CIFAR-10

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- ⊗ population of experts
 - ⊗ surrogate losses

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- population of experts
 - ⊗ surrogate losses
 - ⊗ meta-learning a rejector

limitations?

experts

input features

allocation mechanism

 $e \sim \mathbb{P}(e)$

 $m \sim \mathbb{P}(m | e)$

 L_{0-1}

Bayes optimal deferral rule:

$$\max_{\mathbf{y}} \ \mathbb{P}(\mathbf{y} \,|\, \mathbf{x}) \le \ \mathbb{P}(\mathbf{m} = \mathbf{y} \,|\, \mathbf{x}, \mathbf{e})$$

defer to expert if...

$$\max_{y \in [1,K]} h_y(x) \le h_{\perp}(x,e)$$

defer to expert if...

$$\max_{x \in \mathcal{A}} h_y(x) \leq h_{\perp}(x, e)$$

$$\mathbf{n}_{\perp}(\mathbf{x},\mathbf{e})$$

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- population of experts
 - ⊗ surrogate losses
 - ⊗ meta-learning a rejector

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- population of experts
 - ⊗ surrogate losses
 - ⊗ meta-learning a rejector

feedforward neural network

X

set encoder (permutation-invariant)

$$\mathfrak{D}_{e} = \{(x_n, y_n, m_{e,n})\}_{n=1}^{N}$$

$$g_{\perp}(x,e)$$

feedforward neural network

X

set encoder (permutation-invariant)

$$\mathfrak{D}_{e} = \{(x_n, y_n, m_{e,n})\}_{n=1}^{N}$$

feedforward neural network

> set encoder (permutation-invariant)

$$\mathfrak{D}_{e} = \{(x_n, y_n, m_{e,n})\}_{n=1}^{N}$$

set encoder (permutation-invariant)

$$\mathfrak{D}_{e} = \{(x_n, y_n, m_{e,n})\}_{n=1}^{N}$$

set encoder (permutation-invariant)

$$\mathfrak{D}_{e} = \{(x_n, y_n, m_{e,n})\}_{n=1}^{N}$$

+ : class 0 O : class 1

+ : class 0 O : class 1

+ : class 0 O : class 1

Unskilled expert (1% accuracy)

Skilled expert (95% accuracy)

+ : class 0 O : class 1

L2D-Pop deferral region

Unskilled expert (1% accuracy)

L2D-Pop ✓ Doesn't defer when the expert is (adaptive) poor

Skilled expert (95% accuracy)

+ : class 0 O : class 1

Unskilled expert (1% accuracy)

L2D-Pop ✓ Doesn't defer when the expert is (adaptive) poor

Skilled expert (95% accuracy)

✓ Defers whole of difficult cluster when expert is good

+ : class 0 O : class 1

L2D-Pop classifier region

L2D-Pop deferral region

Unskilled expert (1% accuracy)

L2D-Pop ✓ Doesn't defer when the expert is (adaptive) poor

Skilled expert (95% accuracy)

 Defers whole of difficult cluster when expert is good

+ : class 0 O : class 1

L2D-Pop classifier region L2D-Pop deferral region

Unskilled expert (1% accuracy)

single-L2D deferral boundary

Skilled expert (95% accuracy)

L2D-Pop (adaptive)

Doesn't defer when the expert is poor

single-L2D (constant)

X Over-defers as expert does worse than random on difficult cluster

 Defers whole of difficult cluster when expert is good

 x_1

+ : class 0 O : class 1

L2D-Pop classifier region

Unskilled expert (1% accuracy)

single-L2D deferral boundary

Skilled expert (95% accuracy)

- L2D-Pop (adaptive)
- Doesn't defer when the expert is poor
- single-L2D (constant)
- X Over-defers as expert does worse than random on difficult cluster

- Defers whole of difficult cluster when expert is good
- X Under-defers as classifier only has random chance of being correct on difficult cluster

1.0

- ⊗ single expert
 - ⊗ softmax surrogate loss
 - improving calibration via one-vs-all
- ⊗ multiple experts
 - ⊗ surrogate losses
 - ⊗ conformal sets of experts
- population of experts
 - ⊗ surrogate losses
 - ⊗ meta-learning a rejector

⊗ single expert

- ⊗ softmax surrogate loss
- improving calibration via one-vs-all

multiple experts

- ⊗ surrogate losses
- ⊗ conformal sets of experts

population of experts

- ⊗ surrogate losses
- ⊗ meta-learning a rejector

allocation mechanism

papers & code

funding provided by

co-authors

Rajeev Verma

Daniel Barrejón

Dharmesh Tailor

Putra Manggala

Aditya Patra

Appendix

0-1 loss

$$\ell(r, h; \mathfrak{D}) =$$

$$\sum_{n} (1 - r(x_n)) \mathbb{I}[h(x_n) \neq y_n] + r(x_n) \mathbb{I}[m_n \neq y_n]$$

classifier loss

expert loss

single multi-exper

estimators

$$\hat{p}(m = y | x) = \frac{h_{\perp}(x)}{1 - h_{\perp}(x)}$$

one-vs-all:
$$\hat{p}(m = y | x) = h_{\perp}(x)$$

Softmax:
$$\hat{p}(m_j = y | x) = \frac{h_{\perp,j}(x)}{1 - \sum_{e=1}^{J} h_{\perp,e}(x)}$$

one-vs-all:
$$\hat{p}(m_j = y | x) = h_{\perp,j}(x)$$

[Davidson et al., ICWSM 2017]

softmax

one-vs-all (ours)

one-vs-all (ours)

Gap Accuracy

one-vs-all (ours)

Gap Accuracy

conformal: downstream performance

CIFAR-10

simulated experts:

Table 2: HAM10000 experts configuration.

	Expert configuration	p _{in} [%]	p _{out} [%]	Diagnostic Category [in]
1	Random Expert	-	-	[nv, bkl, df, vasc, mel, bcc, akiec]
2	Dermatologist for malign	25	15	[mel, bcc, akiec]
3	Dermatologist for benign	25	15	[nv, bkl, df, vasc]
4	Specialized dermatologist in nv	50	15	[nv]
5	Specialized dermatologist in vasc	70	15	[vasc]
6	Specialized dermatologist in mel	75	15	[mel]
7	Dermatologist for benign	75	25	[nv, bkl, df, vasc]
8	MLP Mixer	-	-	[nv, bkl, df, vasc, mel, bcc, akiec]
9	Experienced dermatologist	80	50	[nv, bkl, df, vasc, mel, bcc, akiec]
10	Experienced dermatologist	80	60	[nv, bkl, df, vasc, mel, bcc, akiec]

simulated experts:

Table 1: Hate Speech and Galaxy-Zoo experts configuration.

	Expert configuration	p _{flip} [%]	p _{annotator} [%]
1	Random Expert	-	-
2	Probabilistic Expert	_	10
3	Flipping Human Expert	50	_
4	Probabilistic Expert	-	75
5	Flipping Human Expert	30	_
6	Flipping Human Expert	20	_
7	Probabilistic Expert	-	85
8	Human Expert	-	_
9	Probabilistic Expert	-	50
_10	Human Expert	-	_

[Davidson et al., ICWSM 2017]

conformal inference: train-time

conformal inference: train-time

$$h_{\perp,1}(x)$$

 $h_{\perp,2}(x)$

 $h_{\perp,3}(x)$

conformal inference: train-time

$$h_{\perp,1}(x)$$

 $h_{\perp,2}(x)$

$$h_{\perp,3}(x)$$

using validation data, compute the (1-a)-quantile of a conformity statistic:

$$\hat{q}_{1-\alpha}$$

$$h_{\perp,1}(x)$$

 $h_{\perp,2}(x)$

 $h_{\perp,3}(x)$

$$h_{\perp,3}(x)$$

$$h_{\perp,1}(x)$$

$$h_{\perp,3}(x) > h_{\perp,1}(x) > h_{\perp,2}(x)$$

$$C(x) = \left\{ \sum_{e \in C(x)} check if: ? \\ \sum_{e \in C(x)} h_{\perp,e}(x) \ge \hat{q}_{1-\alpha} \right\}$$

$$C(x) = \left\{ \begin{array}{c} \\ \\ \end{array} \right.$$

 $\left. \begin{array}{l} \text{check if:} \\ \mathbf{h}_{\perp,3} \geq \hat{q}_{1-\alpha} \end{array} \right.$

$$C(x) = \left\{ \begin{array}{c} \\ \\ \end{array} \right.$$

$$\mathbf{C}(\mathbf{x}) = \left\{ \begin{array}{c} & \\ & \\ \end{array} \right\} \begin{array}{c} \text{check if:} \\ \mathbf{h}_{\perp,3} + \mathbf{h}_{\perp,1} \geq \hat{q}_{1-\alpha} \end{array}$$

$$\mathbf{C}(\mathbf{x}) = \left\{ \begin{array}{c} & \\ & \\ \end{array} \right\} \begin{array}{c} \text{check if:} \\ & \\ \mathbf{h}_{\perp,3} + \mathbf{h}_{\perp,1} \geq \hat{q}_{1-\alpha} \end{array}$$

Estimating $\mathbb{P}(\mathbf{m} = \mathbf{y} \mid \mathbf{x})$

