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via expert handling the hardest cases
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defer to expert if...

max p(y|x) < 1

Y (constant)
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Bayes optimal deferral rule:

max |
y

|x) < I

(M =y|[x)

probability that the expert is correct

[Mozannar & Sontag, 2020]
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® optimal allocation
® transparency

® detecting distribution shift
(In the expert)
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How well can the softmax-based
system estimate expert correctness”

p(m =y|x) X P(m=y]|x)

degenerate : exp{g,(x)}
parameterization ~ Y exp(gux)

-

gi(x) o gx) e gr(x) g (%)
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estimating expert correctness

A\

D distance: p vs |

softmax 26.77 +1.8

one-vs-all R0 +10 J

(ours)




But does one-vs-all
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y .
I]j’(mj=y\x),‘v’]
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multi-expert implementation

mode]

hi(x) - h(X) o he(x) hyp (%) - hy (%)

one-vs-all
parameterization

g1(x) o g(X) e gr(x) gL - gy A(X)
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multi-expert implementation

training data
3 — N
= { X, Vs My 1o -+ mn,J}n=1

modael
® softmax and one-vs-all variants
® poth consistent w.r.t. O-1 loss

softmax loss function

£(0;x,y,m) = —logh,(x) — Z I] [y = mj] -logh, (x)
J
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assume there's a best expert, |*;
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construct a confidence set of experts:
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conformal inference

assume there's a best expert, |*;

L

(mj*=Y|X) > | (me=Y\X), Ve #]*

construct a confidence set of experts:

P(j*eC(x) > 1—a

team of experts: adaptive in size and membership
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conformal inference: ensembling

e ~
o= (4 )

oredictions: m3 my

aggregated prediction: M
(e.g. by voting)
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meta-learning implementation

hy(x) - h(x) -+ he(X) h (xe)
softmax or
one-vs-all

gi(x) - gilx) - gx(X) |[g . (x.€)

X )
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meta-learning implementation
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Experiment: Synthetic data

+ :class0 O :class 1

“Easy” clusters with
class parity

“Difficult” cluster:
mix of two classes

22



Experiment: Synthetic data
+ :class0 O :class 1 [ ] L2D-Pop ] L2D-Pop deferral

classifier region region

Unskilled expert (1% accuracy) Skilled expert (95% accuracy)

23



Experiment: Synthetic data
+ :class0 O :class 1 [ ] L2D-Pop ] L2D-Pop deferral

classifier region region

Unskilled expert (1% accuracy) Skilled expert (95% accuracy)

X1

L2D-Pop v Doesn't defer when the expert is
(adaptive) poor

24



Experiment: Synthetic data
+ :class0 O :class 1 [ ] L2D-Pop ] L2D-Pop deferral

classifier region region

Unskilled expert (1% accuracy) Skilled expert (95% accuracy)

T o
L2D—P0p v Doesn't defer when the expert is v Defers whole of difficult cluster
(adaptive) poor when expert is good

25



Experiment: Synthetic data
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Experiment: Synthetic data
L2D-Pop L2D-Pop deferral
- classifier region - region op e

Skilled expert (95% accuracy)

+ :class0 O :class 1
Unskilled expert (1% accuracy)
single-L2D

deferral
boundary ™
8

X1
v Defers whole of difficult cluster
when expert is good

L1
L2D-Pop v" Doesn't defer when the expert is
(adaptive) poor

X Under-defers as classifier only has

single-L2D X Over-defers as expert does worse
(constant) than random on difficult cluster

random chance of being correct

on difficult cluster 28
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0-1 loss

£(r,h; D) =
D (1=r(x,) I[h(x,) #y,] + r(x,) I[m, #y,]
n ped Pt

classifier 10ss expert loss

172



estimators

h (X)
1 —h,(x)

softmax: p(m =y |x) =

one-vs-all: p(m=y|x)=h(x)

single expert

h, j(x)

softmax: p(m:. =y|x) =
] 1 - Zizl hJ_,e(X)

one-vs-all: p(m;=y[x) =h, (x)

173
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hate speech detection

[Davidson et al., ICWSM 2017]
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hate speech detection

softmax
1.0 P
. REET
= 0.8 -
=
> 0.0 -
o
E04-
S
2024~
ECE=6.96%
0.0 +— —
0.0 0.5 1.0
Confidence

Gap

one-vs-all (ours)

1.0 ,__1
-

0.8 - _/’
0.6 -
0.4 -
0.2 -

ECE=0.77%
0.0 +———m——4

0.0 0.5 1.0
Confidence
Bl Accuracy



System Accuracy (%)

Hate Speech

92 -
90 -
38 -
86 -
34 -
82 -
80 -
78 -
76 -

== OvA

=== Softmax
= \[oE

==@== (One Classifier

=@== Best Expert

74

2 3 4 5 6 7 3 9
Number of Experts

10

Hate Speech

60 -
10 - H—’/‘d_
20 » ”
—~ 8 o= OvA 1
w=@== Softmax +
6 41 |=—@= MoE .+ + + R
i _A
2 - W—Q
0 1 1 1 1 1 1 1 1 1

2 3 4 5) 6 7 8 9
Number of Experts



conformal: downstream performance
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simulated experts:

Table 2: HAM10000 experts configuration.

Expert configuration Pin 0]  Pout /0] Diagnostic Category [in]

1 - - [nv, bkl, df, vasc, mel, bcc, akiec]

2 malign 25 15 [mel, bcc, akiec]

3 benign 25 15 [nv, bk1l, df, vasc]

4  Specialized dermatologist in nv 50 15 [nv]

5 Specialized dermatologist in vasc 70 15 [vasc]

6 Specialized dermatologist in me 1 75 15 [mel]

7 benign 75 25 [nv, bk1l, df, vasc]

8 MLP Mixer - - [nv, bkl, df, vasc, mel, bcc, akiec]

9 Experienced dermatologist 80 50 [nv, bkl, df, vasc, mel, bcc, akiec]
10  Experienced dermatologist 80 60 [nv, bk1l, df, vasc, mel, bcc, akiec]




simulated experts:

Table 1: Hate Speech and Galaxy-Zoo experts configuration.

EXpGI’t conﬁguration pflip [%] Pannotator [%]
1 _ _
2 Probabilistic Expert - 10
3 50 -
4  Probabilistic Expert - 75
S 30 -
6 20 -
7 Probabilistic Expert - 85
8 Human Expert - -
9 Probabilistic Expert - 50
10 Human Expert - -




m@= one-vs-all (ours) m@= softmax
O naive 0 expert conf. 0 policy

threshold threshold learning

hate speech detection

[Davidson et al., ICWSM 2017]
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conformal inference: train-time
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using validation data, compute the
(1-a)-quantile of a conformity statistic:

Q1—a




conformal inference: test-time
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conformal inference: test-time
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conformal inference: test-time
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conformal inference: test-time
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Estimating P(m = y|x)
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