Towards Anytime Uncertainty Estimation in Early-Exit Neural Networks

Eric Nalisnick

University of Amsterdam

© AdobeStock/Scharfsinn86

$$\mathcal{E}(\theta_{1:E}) = -\sum_{e=1}^{E} \log p_e(y \mid x, \theta_{1:e})$$

$$p_{1}(y|x) \quad p_{2}(y|x) \quad p_{3}(y|x)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow$$

- monotonicity?
- ø diminishing returns?

- monotonicity?
- ø diminishing returns?

interruptibility

- monotonicity?
- ø diminishing returns?

interruptibility

- monotonicity?
- ø diminishing returns?

interruptibility

monotonicity?

ø diminishing returns?

Multi-Scale Dense Net: Overthinking

Overthinking: having the correct prediction but then switching to a wrong prediction.

[Kaya et al., ICML 2019]

 $\Delta = (\text{test error at final exit}) -$

(test error if exited at correct prediction)

$$\Delta(CIFAR - 100) = \sim 14\%$$

$$\Delta(\text{ImageNet}) = \sim 9\%$$

interruptibility

monotonicity

ø diminishing returns?

interruptibility

monotonicity

ø diminishing returns?

interruptibility

monotonicity

ø diminishing returns

interruptibility

monotonicity

ø diminishing returns

only marginally

interruptibility

monotonicity

ø diminishing returns

A simple, post-hoc method for encouraging conditional monotonicity

Metod Jazbec

James U. Allingham

Dan Zhang

Idea: combine the early-exits via a product of experts

Idea: combine the early-exits via a product of experts

$$p_{1:2}(y \mid x) = \frac{p_1(y \mid x) \cdot p_2(y \mid x)}{\sum_{y'} p_1(y' \mid x) \cdot p_2(y' \mid x)} \quad p_{1:2}(y \mid x)$$

$$p_{1:2}(y \mid x) = \frac{p_1(y \mid x) \cdot p_2(y' \mid x)}{\sum_{y'} p_1(y' \mid x) \cdot p_2(y' \mid x)} \quad p_{1:2}(y \mid x)$$

$$p_1(y \mid x) = \frac{p_1(y \mid x) \cdot p_2(y \mid x)}{\sum_{y'} p_1(y' \mid x) \cdot p_2(y' \mid x)} \quad p_{1:2}(y \mid x)$$

$$p_1(y \mid x) = \frac{p_1(y \mid x) \cdot p_2(y \mid x)}{\sum_{y'} p_1(y' \mid x) \cdot p_2(y' \mid x)} \quad p_{1:2}(y \mid x)$$

$$p_1(y \mid x) = \frac{p_1(y \mid x) \cdot p_2(y \mid x)}{\sum_{y'} p_1(y' \mid x) \cdot p_2(y' \mid x)} \quad p_1(y \mid x)$$

$$p_{1:e}(y \mid x) = \frac{\prod_{j=1}^{e} p_{j}(y \mid x)}{\sum_{y'} \prod_{j=1}^{e} p_{j}(y' \mid x)}$$

One catch: exit distributions must have finite (or quickly decaying) support to bound influence of (e+1)th expert.

One catch: exit distributions must have finite (or quickly decaying) support to bound influence of (e+1)th expert.

One catch: exit distributions must have finite (or quickly decaying) support to bound influence of (e+1)th expert.

One catch: exit distributions must have finite (or quickly decaying) support to bound influence of (e+1)th expert.

One catch: exit distributions must have finite (or quickly decaying) support to bound influence of (e+1)th expert.

One catch: exit distributions must have finite (or quickly decaying) support to bound influence of (e+1)th expert.

Implementation with ReLUs

$$p_{1:e}(y \mid x) = \frac{\prod_{j=1}^{e} max \left(0, f_{j,y}(x)\right)}{\sum_{y'} \prod_{j=1}^{e} max \left(0, f_{j,y'}(x)\right)}$$

 $f_{j,y}(x)$ is logit for yth class at jth exit

Implementation with ReLUs

$$p_{1:e}(y \mid x) = \frac{\prod_{j=1}^{e} max \left(0, f_{j,y}(x)\right)}{\sum_{y'} \prod_{j=1}^{e} max \left(0, f_{j,y'}(x)\right)}$$

Clipping logits controls deviation from perfect monotonicity.

We apply this transformation post-hoc!

Monotonicity: CIFAR-100

Monotonicity: CIFAR-100

Accuracy: CIFAR-100 & ImageNet

Accuracy: CIFAR-100 & ImageNet

Overthinking: CIFAR-100 & ImageNet

Overthinking: CIFAR-100 & ImageNet

^{*}Doesn't mean that overall accuracy is improved by this amount since our model makes more mistakes at intermediate exits.

Ensuring consistency across exits in predictive uncertainty estimates

Metod Jazbec

Dan Zhang

Patrick Forré

Stephan Mandt

Anytime Models

Anytime Uncertainty

Anytime Uncertainty Estimation

We want nested, non-increasing prediction intervals across exits.

Anytime-Valid Confidence Sequences

We construct an *anytime-valid* confidence sequence across the exits.

$$\mathbb{P}\left(\forall t, y^* \in C_t(x)\right) \ge 1 - \alpha$$

Due to approximations, we can only hope to achieve this for large datasets (and if y is from the training distribution).

[Robbins, AMS 1970]

Anytime-Valid Confidence Sequences

Derived from the following predictive-likelihood martingale:

$$R_{t}(y) = \prod_{e=1}^{t} \frac{p_{e}(y \mid x, \mathfrak{D})}{p_{e}(y \mid x, \hat{\theta}_{e})} \quad \hat{\theta}_{e} \sim p(\theta_{e} \mid x, \mathfrak{D})$$

Anytime-Valid Confidence Sequences

Derived from the following predictive-likelihood martingale:

$$R_{t}(y) = \prod_{e=1}^{t} \frac{p_{e}(y \mid x, \mathfrak{D})}{p_{e}(y \mid x, \hat{\theta}_{e})} \quad \hat{\theta}_{e} \sim p(\theta_{e} \mid x, \mathfrak{D})$$

Construct set at time t as:

$$C_t(x) = \left\{ y \in Y \mid R_t(y) \le 1/\alpha \right\}$$

Summary

- Early-exit neural networks have mostly marginal anytime properties (and overthink)
- We give them better conditional monotonicity via a product ensemble.
- Also want consistency in predictive uncertainty across exits.
- ⊗ We enforce this with anytime-valid confidence sequences.

Thank you! Questions?

paper

Metod Jazbec

James U. Allingham

Dan Zhang

Patrick Forré

Stephan Mandt