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Multi-Scale Dense Net: Overthinking

Overthinking: having the correct prediction
but then switching to a wrong prediction.

[Kaya et al., [CML 2019]

A = (test error at final exit) —

(test error If exited at correct prediction)

A(CIFAR — 100) = ~ 14 %
A(ImageNet) = ~ 9%
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A simple, post-noc method for
encouraging conditional monotonicity
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Implementation with RelLUs
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Implementation with RelLUs

P :e(y ‘ X)

Clipping logits cor

perfect

2y

monotonic

J.e=1 max( : Jy(x))

. max ( : Jy(x))

trols deviation from
ity.

We apply this transformation post-hoc!
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Test Accuracy (1)
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Overthinking: CIFAR-100 & ImageNet
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Overthinking: CIFAR-100 & ImageNet
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*Doesn't mean that overall accuracy is improved by this amount
since our model makes more mistakes at intermediate exits.
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Anytime Uncertainty Estimation

We want nested, non-increasing
porediction intervals across exits.

consistency: Ci(x) Cyx)  Ci(x)

Ci(x) & Ca(x) € Ca(x) T T T

X_’h1—’h2—’h3



Ci(x) Ca(x) Ca(x) Cy(x) Cs(x)

. —Ill--

B —
1

2 3 4 5
Early-Exit (t)

94



Anytime-Valid Confidence Sequences

We construct an anytime-valid
confidence sequence across the exits.

P(Vt, y*eC(x)) 21—«

*Due to approximations, we Cix) G Ca(x)
can only hope to achieve this T T T

for large datasets (and it y* is
from the training distribution). X —» . h, h,

'Robbins, AMS 1970]
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Anytime-Valid Confidence Sequences

Derived from the following
predictive-likelihood martingale:

t
P.(Y|X, D) .
R(Y)=II—A 0, ~p(6,]x,D
A by %, 6,) ( )

Construct set at time t as:

C(x)={y €Y |R(y) < 1/a}
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Regression Simulation
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Regression Simulation
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Regression Simulation
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Regression Simulation
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Regression Simulation
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marginal

® We give -
monoton

summary

® Early-exit neural networks have mostly

anytime properties (and overthink)

‘hem better conditional

ICity via a product ensemble.

® Also want consistency In predictive
uncertainty across exits.

® We enforce this with anytime-valid
confidence sequences.
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