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Garbage in: arbitrary priors
Garbage out: uncontrollable error bars

Michael |I. Jordan, MLSS (2017)
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Nonparametric Priors on NN’s Function
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funcions (such as all continucus functions). Many refecences an newal networks are available (Dihop, 1995,
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Rohinsor [2001], which is now considerzbly out of date Thus, in this chaprer | survey the ex- prescnts challenges. This paper reviews several priars
isting work on NN priors, some of which was performed in the carly days of Bayesian NNs and asuzal aetwork modsk. The: et ou Us: poetesior i
therefore also discussec by Robinson [2001). However, mast of the werk is recent, scme having
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While the choice of prier is one of the most critical parts of the Bayesian infer-
NNs have been zpplled to 2 myriad of different problems over the past thirty years, and} ence workflow, recent Bayesian deep leaming models have often fallen back on
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Builds off of

Penalising model component
complexity: A principled,
practical approach to

constructing priors

Daniel Simpson*, Havard Rue, Thiago G. Martins, Andrea
Riebler, and Sigrunn H. Sdrbye

University of Warwick, NTNU, University of Tromsg The Arctic University
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Model of Interest

PRIOR: 6@ ~ p(@|7)
DATA MODEL: Y ~ p(y|0)



Model of Interest

WEIGHT PRIOR: O ~ N(¢, tl)
NEURALNET: 'y ~ p(Y|0)



Model of Interest

WEIGHT PRIOR: O ~ N(¢, zl)
NEURALNET: 'y ~ p(Y|0)

Define Hyper-Prior
p(7)




METHOD:

Recipe for
Prior Specification
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Three Steps

S1I=:E: A8 Define Reference Model

pyl®)

Same parameters as the
mean of our first-level prior: @ ~ N(¢, tl)

These parameters (¢h) should encode our
inductive bias or prior beliefs.
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Three Steps

SILSEZ8 Specify Divergence

K = _6’\1[

Expectation taken
over first-level prior

)p(y10) | p(y|)]]

Divergence between model of
iInterest and reference model

It divergence is KL, then this is the expected bits lost
when approximating the full model with the

reference model.
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I R=1 LW Define Prior & Reparametrize
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Three Steps

SIS Al Define Reference Model

SIS EE 728 Specify Divergence
o) N =& XWDefine Prior & Reparametrize

FINAL FORM
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Meaningful Notion of Scale

0 ~ N, 7l)




Meaningful Notion of Scale

Scale (T) is determined by how
quickly our model’s predictions
(on training data) deviate from
the reference model’s

0 ~ N(¢, tl)

10)
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Im K

Limiting Prior

0— ¢

I 2
P 11 y| = 50— ¢r11¢) +

1 1
p(t)=n (5 T I[¢]) > I[¢]
Fisher information for the
reference parameter

higher
order
terms



SANITY CHECK: SHRINKAGE
FOR LOGISTIC REGRESSION
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Shrinkage Prior for Logistic Regression

y ~ Bernoulli (f(fx))
p,~ N, 74,

A, ~ C*(0,1)
T ~ p(7)

Reference model:
y ~ Bernoulli (f(0"x)) = Bernoulli (0.5)



Shrinkage Prior for Logistic Regression

Table 1: Logistic Regression. Below we report test set predictive log-likelihoods for the half-Cauchy
prior, ECP, and PredCP under both VI and MCMC. Results are averaged across 20 splits.

MARKOV CHAIN MONTE CARLO
DATA SET  Ninin D HALF-CAUCHY ECP PREDCP

allaml 51 7129

colon 44 2000
breast 82 0
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Table 1: Logistic Regression. Below we report test set predictive log-likelihoods for the half-Cauchy
prior, ECP, and PredCP under both VI and MCMC. Results are averaged across 20 splits.

MARKOV CHAIN MONTE CARLO

DATA SET  Ninin D HALF-CAUCHY ECP PREDCP
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Table 1: Logistic Regression. Below we report test set predictive log-likelihoods for the half-Cauchy
prior, ECP, and PredCP under both VI and MCMC. Results are averaged across 20 splits.

MARKOV CHAIN MONTE CARLO
DATA SET  Nimin D HALF-CAUCHY ECP PREDCP

allaml 51 7129 -0.19+.02 -0.17+02 -0.17+.02
colon 44 2000 —0.54+.05 —-0.52+.05 -0.54+.04
breast 32 0 —0.55+.02 —-0.55+.01 —-0.55+.02
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allaml 51 7129
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Shrinkage Prior for Logistic Regression

Table 1: Logistic Regression. Below we report test set predictive log-likelihoods for the half-Cauchy
prior, ECP, and PredCP under both VI and MCMC. Results are averaged across 20 splits.

MARKOV CHAIN MONTE CARLO
DATA SET  Nimin D HALF-CAUCHY ECP PREDCP

allaml 51 7129 -0.19+.02 -0.17+02 -0.17+.02
colon 44 2000 —0.54+.05 —-0.52+.05 -0.54+.04
breast 32 0 —0.55+.02 —-0.55+.01 —-0.55+.02

VARIATIONAL INFERENCE
DATA SET  Niuin D HALF-CAUCHY ECP PREDCP

allaml 51 7129 -0.43+.01 -0.32+.01 -0.32+.01
colon 44 2000 -0.61+.02 —(0.63+.03 —-0.66+.02
breast 82 9 —(0.60+.01 -0.58+.01 -0.58+.01




Application to
Depth Selection
N Neural Networks
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Layer index

y NP(Y|X {Hl} 1)



Layer-Wise Prior for NNs

Self-referential reference model:

/1



Layer-Wise Prior for NNs

Self-referential reference model:

/2



Layer-Wise Prior for NNs

| p; || Pi-1l

_ Divergence
Self-referential reference model: | measues e
capacity afforded
by the extra layer

/3



Layer-Wise Prior for NNs

Self-referential reference model:
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Layer-Wise Prior for NNs

Joint Prior:
L

w(T1,...,Tr) = 7(T1) Hw(fcl\fcl, ey TI1)
|=2

Factorization nicely follows the
NN's layer structure.



Layer-Wise Prior for NNs

Traditional Neural Net Residual Neural Net

h,,=F(th)  hy =Fh)+h,



Layer-Wise Prior for NNs
p(7)

Traditional Neural Net Residual Neural Net 1.0

0.8

0.6

0.4

0.2

0.0




Layer-Wise Prior for NNs

ra

ditional N

eural Net

Residual Neura

| Net

(7)

1.0
0.8
0.6
0.4
0.2

0.0



Layer-Wise Prior for NNs

Table 2: ARD-ADD Resnet. Below we report test set RMSE for UCI benchmarks, comparing the
PredCP against a shrinkage prior [37] and a fixed scale. Results are averaged across 20 splits.

Prior Type boston concrete  energy kin8nm power wine yacht

FIXED
SHRINKAGE [37]
PREDCP




Layer-Wise Prior for NNs

Table 2: ARD-ADD Resnet. Below we report test set RMSE for UCI benchmarks, comparing the
PredCP against a shrinkage prior [37] and a fixed scale. Results are averaged across 20 splits.

Prior Type boston concrete  energy kin8nm power wine yacht

FIXED 229+33 351+t41 083+14 006=x00 3.32+00 0.58+.04 0.60+.12
SHRINKAGE [37] 2.37+18 3.76 =23 083 +08 0.06 00 3.24+07 0.54+.03 0.60 +.16
PREDCP 226 +06 3.70+=46 0.82+07 0.06=+00 3.27+09 0.56+03 057 +.03




Application to
Meta-Learning
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Few-Shot Learning

[(Chen et al., 2019] propose the model:
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Task-specific
parameters



Few-Shot Learning
[(Chen et al., 2019] propose the model:

Y; Np(ytlxp Ht)a Ht ~ N(¢9 T[l)

Task-specific Global, task-agnostic
parameters parameters



Few-Shot Learning

Full Model:

Y: ™~ p(yt | Xta Ht)

Reference Model:

yt ~ p(Yt | Xta ¢)



Few-Shot Learning

Full Model:

Y: ™~ p(yt | Xta Ht)

Divergence represents
how much information
IS lost when we use

Reference Model: the tasieagnostic

parameters

yt ~ p(Yt | Xta ¢)
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FEwWSHOT-CIFAR100

1-SHOT 5-SHOT
MAML 35618 50.3=0.9
o-MAML + uniform prior [11] 39.3£1.8 51.0=1.0
o-MAML + shrinkage prior 40919 52.7L£09
o-MAML + PredCP 41.2+=1.8 529+0.9




Few-Shot Learning

FEwWSHOT-CIFAR100
1-SHOT 5-SHOT

MAML 35.6+1.8 50.3+0.9
o-MAMVL + uniform prior [11] 39.3+1.8 51.0=x1.0
o-MAML + shrinkage prior 409+£19 52.7+0.9
o-MAML + PredCP 41.2+1.8 529=+0.9

MINI-IMAGENET
1-SHOT 5-SHOT

MAML

o-MAMVL + uniform prior [11]
o-MAML + shrinkage prior
o-MAML + PredCP



Few-Shot Learning

FEWSHOT-CIFAR100

1-SHOT 5-SHOT
MAML 35.6+1.8 50.3+0.9
o-MAMVL + uniform prior [11] 39.3+1.8 51.0=x1.0
o-MAML + shrinkage prior 409+£19 52.7+0.9
o-MAML + PredCP 41.2+1.8 529=+0.9

MINI-IMAGENET

1-SHOT 5-SHOT
MAML 6.8+ 19 584409
o-MAML + uniform prior [11] 47.7x0.7  60.1 =0.8
o-MAML + shrinkage prior 48.5+19 60.9+0.7
o-MAML. + PredCP 493 1.8 61.9=0.9
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Bayesian Updating

Consider

Bayesian updating under the
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Bayesian Updating

Consider Bayesian updating under the

Sut s
featu

T~ p(7; X))

PredCP.

t’s a bit weird because the PredCP conditions
the model on the first set of features.

nouldn’t we also account for subsequent

‘e observations”?




Generative Process
for Bayes Updating




Generative Process
for Bayes Updating
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Generative Process
for Bayes Updating
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Generative Process
for Bayes Updating
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I | Prior for t=2
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Generative Process
for Bayes Updating

2.5

N 2.0+

1.5 -

1.0

]
=
S

(7, X 1)

0|t
3- "/)_I(K; Xl)
’ \

Say we see the
exact same features
at the next time step




Generative Process
for Bayes Updating

Prior for t=2
0.3 - timestep

:[)(T; X]) S 0.5

0|t
"/)_1(1('; Xl)

3.0

2.5

2.0 -

1.5 -

~~
]
Z
~—

1.0

\

Say we see the
exact same features
at the next time step
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For the shrinkage regression model, we get the t=2
prior (t=1 posterior):

(T | D1jx2) =
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For the shrinkage regression model, we get the t=2
prior (t=1 posterior):

_ 0 Dyl o Dy (7)
m(T|Di;a2) =p ( )X21 o >X1(T) D1) = ™ -




Simple Example: Linear Regression

For the shrinkage regression model, we get the t=2
prior (t=1 posterior):

(T | Disx2) =P

—1
( )X2 ’ )X1(T)

T Dl)

S

0 Dy, o Dy (7)

ot




Simple Example: Linear Regression

For the shrinkage regression model, we get the t=2

prior (t=1 posterior);

—1
(T |Drsze) =p ( )Xz °

) Xl(T)

.
)

0 Dy, o Dy (7)

ot

Ratio will be ~1 when featuresM

have similar second moments




Simple Example: Linear Regression

For the shrinkage regression model, we get the t=2

prior (t=1 posterior);

(T | Dryxe) = p ( ))_(21 o )Xl(T)

Ratio will be ~1 when featuresM

have similar second moments

Of course, we usually standardize the
first two moments anyway (z-scoring).

S
5

0 Dy, o Dy (7)

ot

N1 2

N1 ZN?' 332

n=1"2n




Layer-Wise Prior for ResNets

N, 2:“'11 Varg; w, 1o [fl(ht 1mi—1 W)W, ]
]Vt 1 Zn 1varWW D [fl(ht,n,l—lwl)wo}

\

Ratio of (prior)
poredictive variances

]D)t_l o ]D)t—l(Tl) T}



Future Work

One downside of the current formulation is that
dependence across data points is not accounted for.

N
0 KLD [Py 11 py| = Y Eg kLD [p(y 1%,06) 11 p(y 1%, )]

n=1



Future Work

One downside of the current formulation is that
dependence across data points is not accounted for.

N
0 KLD [Py 11 py| = Y Eg kLD [p(y 1%,06) 11 p(y 1%, )]

n=1

|deally, we want to compute:

KLD |Eg [p(Y X, 01 1] p(Y 1%, 9]




Summary

® Framework for specifying priors using a
reference model

® Reparametrization allows us to think
about whole models but then transfer
beliefs to parameters.

® Retference models can be constructed
by exploiting the compositional nature
of NNs (eg layers)



Thank you. Questions?
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