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Walt a minute...How certain Is
the model about its prediction?

f(x) =y + P(y*€Cx)>95%

example: 95% confident that the patient has
pneumonia, tuberculosis, or asthma.



This talk Is about how to know
what your model doesn't know.



. What is Uncertainty?



Two Types of Uncertainty

® Aleatoric
e fundamental, related to Bayes error rate
® possibly reduced by collecting more features

® Epistemic
® due to lack of experience / observations
® always reduced by collecting more data points
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Examples from Autonomous Driving

train 1N urban environment
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In practice, distinguishing aleatoric vs epistemic
uncertainty is incredibly difficult.



In practice, distinguishing aleatoric vs epistemic
uncertainty is incredibly difficult.

For the rest of this talk, I'll ignore the distinction:
uncertainty Is ‘nigh’ when either types are hign.



[|. Modeling Paradigms



Assumptions

fixed, unknown distribution generates the data:
y ~ P (ylx)
we only see samples, I.e. the training set:
D = {(te o)},

fit model to recover the ground-truth distribution:
p(y [x) ~ P (y|x)
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Two Modeling Paradigms

® Frequentism: randomness from data’s
sampling distribution

® Bayesianism: randomness from prior distribution
over model parameters
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® Frequentism: randomness from data’s
sampling distribution



Frequentist Learning: Maximum Likelihooo

maximize the log-likelihood of parameters:

A\

\
) = ! 0
argmax ) logp (y, |y, 0)

n=1

(for classification, equivalent to cross-entropy l0ss)



Frequentist Learning: Ideal UQ

under (near) perfect learning, can quantity
uncertainty simply oby...

model probability retlects confidence:

P(S/\X;@) ~ P(y=79]|x
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-requentist Learning: Limitations

well-motivated with large data sets, but
models are big and data is often scarce!

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
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[Guo et al., ICML 2017]
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® Bayesianism: randomness from prior distribution
over model parameters



Bayesian Learning: Posterior Distribution
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posterior distribution
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Bayesian Learning: Posterior Distribution

p(D)
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Bayesian Learning: ldeal UQ

"~/

for new data point X
iINntegrate out posterior distribution:

p(S’/l)"(,@) =Lp(§7|>’(,9) p(@l@) dd

posterior predictive distribution



Bayesian Learning: |deal UQ

under (near) perfect learning, use posterior
poredictive distribution for ground-truth probabillities



Bayesian Learning: |deal UQ

under (near) perfect learning, use posterior
poredictive distribution for ground-truth probabillities
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Bayesian Learning: Limitations

integrating over the parameters is difficult
to even approximate for neural networks.

8 marginal likelihood

8 posterior predictive distripution



Bayesianism vs Frequentism: Summary
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Bayesianism vs Freguentism: Summary

® Frequentism
data-driven, easy computation
misled by sampling noise it dataset is not large

® Bayeslanism
orior distriobution ‘jump starts' learning
computation Is very, very costly
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Practical Methods for UQ

® Frequentism
® pbootstrap aggregation (bagging)
® conformal prediction

® Bayesianism
® sample-then-optimize ensembling
® variational inference w/ Laplace approximation
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Bootstrap Aggregation

recall that frequentism assumes randomness
comes from the data sampling process.

it we could see additional data sets, we could
Know more about the sampling noise.

3 (DS, ~P(ylx)




Bootstrap Aggregation

Bootstrapping synthesizes additional data sets by
resampling from the training set.

1 N
(DI ~ < 28 [ y0)
n=1

sampling with replacement
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Bootstrap Aggregation
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Bootstrap Aggregation
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Further Reading
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on Statistics and
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An
Introduction
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Robert J. Tibshirani
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Sample-then-Optimize Ensemble

recall that Bayesianism assumes randomness cComes
from the prior.

we perform a bagging-like procedure, but using
samples from the prior to initialize training.

{ék}E=1 ~ p(6’)



Sample-then-Optimize Ensemble
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Sample-then-Optimize Ensemble
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Sample-then-Optimize Ensemble
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Sample-then-Optimize Ensemble

'Matthews et al., 2017| show the procedure
(very nearly) recovers the posterior in linear models.
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Sample-then-Optimize Ensemble

HMC
METRIC (REFERENCE) SGD DEEP ENS

CIFAR-10

89.04 83.44 88.49
ACCURACY +0.25 +1.14 4+0.10

94.01 85.48 91.52
AGREEMENT 40.25 +1.00 10.06

surprisingly comparable to high-fidelity Bayesian
inference (performed on 512 TPUS).
'lzmailov et al., ICML 2021]



Bayesian vs Freqguentist Ensemples
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Further Reading

Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles

Balaji Lakshminarayanan Alexander Pritzel Charles Blundell
DeepMind
{balajiln,apritzel,cblundell}@google.com

Abstract

Deep neural networks (NNs) are powerful black box predictors that have recently
achieved impressive performance on a wide spectrum of tasks. Quantifying pre-
dictive uncertainty in NNs is a challenging and yet unsolved problem. Bayesian
NNs, which learn a distribution over weights, are currently the state-of-the-art
for estimating predictive uncertainty; however these require significant modifica-
tions to the training procedure and are computationally expensive compared to
standard (non-Bayesian) NNs. We propose an alternative to Bayesian NNs that
is simple to implement, readily parallelizable, requires very little hyperparameter
tuning, and yields high quality predictive uncertainty estimates. Through a series
of experiments on classification and regression benchmarks, we demonstrate that
our method produces well-calibrated uncertainty estimates which are as good or
better than approximate Bayesian NNs. To assess robustness to dataset shift, we
evaluate the predictive uncertainty on test examples from known and unknown
distributions, and show that our method is able to express higher uncertainty on
out-of-distribution examples. We demonstrate the scalability of our method by
evaluating predictive uncertainty estimates on ImageNet.

What Are Bayesian Neural Network Posteriors Really Like?

Pavel Izmailov! Sharad Vikram? Matthew D. Hoffman? Andrew Gordon Wilson

Abstract

The posterior over Bayesian neural network
(BNN) parameters is extremely high-dimensional
and non-convex. For computational reasons, re-
searchers approximate this posterior using in-
expensive mini-batch methods such as mean-
field variational inference or stochastic-gradient
Markov chain Monte Carlo (SGMCMC). To in-
vestigate foundational questions in Bayesian deep
learning, we instead use full-batch Hamiltonian
Monte Carlo (HMC) on modern architectures. We
show that (1) BNNs can achieve significant per-
formance gains over standard training and deep
ensembles; (2) a single long HMC chain can pro-
vide a comparable representation of the posterior
to multiple shorter chains; (3) in contrast to re-
cent studies, we find posterior tempering is not
needed for near-optimal performance, with lit-
tle evidence for a “cold posterior” effect, which
we show is largely an artifact of data augmenta-
tion; (4) BMA performance is robust to the choice
of prior scale, and relatively similar for diagonal
Gaussian, mixture of Gaussian, and logistic priors;
(5) Bayesian neural networks show surprisingly
poor generalization under domain shift; (6) while
cheaper alternatives such as deep ensembles and
SGMCMC can provide good generalization, their
predictive distributions are distinct from HMC.
Notably, deep ensemble predictive distributions
are similarly close to HMC as standard SGLD,
and closer than standard variational inference.

for neural networks promises improved predictions, reli-
able uncertainty estimates, and principled model compar-
ison, naturally supporting active learning, continual learn-
ing, and decision-making under uncertainty. The Bayesian
deep learning community has designed multiple success-
ful practical methods inspired by the Bayesian approach
(Blundell et al., 2015; Gal & Ghahramani, 2016; Welling
& Teh, 2011; Kirkpatrick et al., 2017; Maddox et al., 2019;
[zmailov et al., 2019; Daxberger et al., 2020), with applica-
tions ranging from astrophysics (Cranmer et al., 2021) to
automatic diagnosis of Diabetic Retinopathy (Filos et al.,
2019), click-through rate prediction in advertising (Liu et al.,
2017) and fluid dynamics (Geneva & Zabaras, 2020).

However, inference with modern BNNSs is distinctly chal-
lenging. We wish to compute a Bayesian model average cor-
responding to an integral over a multi-million dimensional
multi-modal posterior, with unusual topological properties
like mode-connectivity (Garipov et al., 2018; Draxler et al.,
2018), under severe computational constraints.

There are therefore many unresolved questions about
Bayesian deep learning practice. Variational procedures
typically provide unimodal Gaussian approximations to the
multimodal posterior. Practically successful methods such
as deep ensembles (Lakshminarayanan et al., 2017; Fort
et al., 2019) have a natural Bayesian interpretation (Wil-
son & Izmailov, 2020), but only represent modes of the
posterior. While Stochastic MCMC (Welling & Teh, 2011;
Chen et al., 2014; Zhang et al., 2020b) is computationally
convenient, it could be providing heavily biased estimates
of posterior expectations. Moreover, Wenzel et al. (2020)
question the quality of standard Bayes posteriors, citing
results where “cold posteriors”, raised to a power 1/7" with
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Practical Methods for UQ

® Frequentism
® pbootstrap aggregation (bagging)
® conformal prediction

® Bayesianism
® sample-then-optimize ensembling



Conformal Prediction

The aim of conformal prediction 1s to construct
uncertainty sets with guaranteed validity.

. e N -
d-Squirrel (Alaska) Copyright 1998 - Mon
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|Angelopoulos & Bates, 2022]



Conformal Prediction

The aim of conformal prediction is to construct
uncertainty sets with guaranteed validity.

softmax
output

.. —8—» IP(y*EC(x)) =95 %
05

classes



Conformal Prediction

instead of using raw outputs as the confidence
level, use held-out data to adapt the threshold

theoretical guarantee stems from the assumption
of exchangeabillity:

P(Yh Y2 Y3) — P(Yﬂﬂ)’ Y 2(2)> Yﬂ(3))

for any permutation JT



Conformal Prediction: Train-Time

p(y = 1]x) p(y = 2| x) p(y = 3| x)

) for every point in the held-out set, sort the model
oropabilities In decreasing order.
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Conformal Prediction: Train-Time

p(y =2|x) > ply=1[x) > ply=3[x)

1) sum the probabillities (decreasing order) until the
true-class Is included.
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Conformal Prediction: Train-Time

s(x) = ply=2[(x) + ply=1[x)

1) sum the probabillities (decreasing order) until the
true-class Is included.



Conformal Prediction: Train-Time

s(x) = ply=2[(x) + ply=1[x)

1) compute the (1-a)-quantile of the scores across
the held-out set.



Conformal Prediction: Train-Time

count

scores, S(X)

V) compute the (1-a)-quantile of the scores.



Conformal Prediction: Test-Time
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) rank classes by model probabilities.
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Conformal Prediction: Test-Time
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Conformal Prediction: Test-Time

p(y =3|x) > ply=2[x) > ply=1[x)

checking if Z p(y | x) = g,
yeC(x)
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Conformal Prediction: Test-Time

N
y=3 y=2

true label is guaranteed to be In this set (1-0)%
of the time, on average over the test set.



Further Reading

A Gentle Introduction to Conformal Prediction and

Distribution-Free Uncertainty Quantification

Anastasios N. Angelopoulos and Stephen Bates

December 8, 2022

Abstract

Black-box machine learning models are now routinely used in high-risk settings, like medical diagnos-
tics, which demand uncertainty quantification to avoid consequential model failures. Conformal predic-
tion (a.k.a. conformal inference) is a user-friendly paradigm for creating statistically rigorous uncertainty
sets/intervals for the predictions of such models. Critically, the sets are valid in a distribution-free sense:
they possess explicit, non-asymptotic guarantees even without distributional assumptions or model as-
sumptions. One can use conformal prediction with any pre-trained model, such as a neural network, to
produce sets that are guaranteed to contain the ground truth with a user-specified probability, such as
90%. It is easy-to-understand, easy-to-use, and general, applying naturally to problems arising in the
fields of computer vision, natural language processing, deep reinforcement learning, and so on.

This hands-on introduction is aimed to provide the reader a working understanding of conformal
prediction and related distribution-free uncertainty quantification techniques with one self-contained
document. We lead the reader through practical theory for and examples of conformal prediction and
describe its extensions to complex machine learning tasks involving structured outputs, distribution
shift, time-series, outliers, models that abstain, and more. Throughout, there are many explanatory
illustrations, examples, and code samples in Python. With each code sample comes a Jupyter notebook
implementing the method on a real-data example; the notebooks can be accessed and easily run by
clicking on the following icons: o
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Variational Inference

construct a tractable approximation to the
Bayesian posterior distribution.

/\

approximation

q (0)

“ N

{rue posterior
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| aplace Approximation

p (0]1D) ~ N (éMAP» H_l(éMAP))

N 9% {1
o= {log p(y,| gn,;) + log p(0) }

n=1
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| aplace Approximation

small curvature,
H(O) large posterior variance
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| aplace Approximation
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| aplace Approximation

compute predictive distribution using
posterior approximation

o (71%.9) % | p(71%.0) N (O H ' Guse)) 00
v

mignt need to approximate integral with sampling
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Further Reading

Laplace Redux — Effortless Bayesian Deep Learning

Erik Daxberger*®™ Agustinus Kristiadi*' Alexander Immer* P Runa Eschenhagen*-' 1 'L
° ; Matthias Bauer* tm . Pa C ka g e a p a C e

Philipp Hennig

“University of Cambridge
"MPI for Intelligent Systems, Tiibingen
"University of Tiibingen
*Department of Computer Science, ETH Zurich
PMax Planck ETH Center for Learning Systems
9DeepMind, London

Abstract
The laplace package facilitates the application of Laplace approximations for entire neural networks, subnetworks of

Bayesian formulations of deep learning have been shown to have compelling theo- neural networks, or just their last layer. The package enables posterior approximations, marginal-likelihood estimation,

retical properties and offer practical functional benefits, such as improved predictive
uncertainty quantification and model selection. The Laplace approximation (LA) and various posterior predictive computations. The library documentation is available at
is a classic, and arguably the simplest family of approximations for the intractable https://aleximmer.github.io/Laplace.

posteriors of deep neural networks. Yet, despite its simplicity, the LA is not as

popular as alternatives like variational Bayes or deep ensembles. This may be due There is also a corresponding paper, Laplace Redux — Effortless Bayesian Deep Learning, which introduces the library,
to assumptions that the LA is expensive due to the involved Hessian computation,

that it is difficult to implement, or that it yields inferior results. In this work we show provides an introduction to the Laplace approximation, reviews its use in deep learning, and empirically demonstrates its
that these are misconceptions: we (i) review the range of variants of the LA includ- versatility and competitiveness. Please consider referring to the paper when using our library:

ing versions with minimal cost overhead; (ii) introduce laplace, an easy-to-use

software library for PyTorch offering user-friendly access to all major flavors of the

LA; and (iii) demonstrate through extensive experiments that the LA is competitive

with more popular alternatives in terms of performance, while excelling in terms

of computational cost. We hope that this work will serve as a catalyst to a wider

adoption of the LA in practical deep learning, including in domains where Bayesian

approaches are not typically considered at the moment.




Practical Methods for UQ

® Frequentism
® pbootstrap aggregation (bagging)
® conformal prediction

® Bayesianism
® sample-then-optimize ensembling
® variational inference w/ Laplace approximation



Practical Methods for UQ: Summary

® Frequentism
® need to do more than maximum likelihood
® cxtra data: synthesized or from held-out set

® Bayeslanism
® need to do less for the sake of computation
® construct approximations localized to areas of
high posterior density.



Hybrid Methods for UQ

can mix Bayesian and frequentist procedures!

® data augmentation: sampling new data by applying
bespoke transformations to original dataset.

® apply conformal prediction to posterior predictive
distribution: frequentist correction to a Bayesian model



V. Evaluating
Uncertainty Quantification



Fvaluating UQ

® Callbration: can the model forecast its own pertormance”

® Coverage: does the model meet the given error level?
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Calibration
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Calibration
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Calibration: Over-Confidence

ResNet (2016)
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[Guo et al., ICML 2017]



Further Reading

On Calibration of Modern Neural Networks

Chuan Guo ™' Geoff Pleiss"! YuSun'! Kilian Q. Weinberger '

Abstract

Confidence calibration — the problem of predict-
ing probability estimates representative of the
true correctness likelihood — is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling — a single-
parameter variant of Platt Scaling — is surpris-
ingly effective at calibrating predictions.
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Abstract

Probabilistic classifiers output a probability dis-
tribution on target classes rather than just a class
prediction. Besides providing a clear separation
of prediction and decision making, the main ad-
vantage of probabilistic models is their ability to
represent uncertainty about predictions. In safety-
critical applications, it is pivotal for a model to pos-
sess an adequate sense of uncertainty, which for
probabilistic classifiers translates into outputting
probability distributions that are consistent with
the empirical frequencies observed from realized
outcomes. A classifier with such a property is
called calibrated. In this work, we develop a gen-
eral theoretical calibration evaluation framework
grounded in probability theory, and point out sub-
tleties present in model calibration evaluation that
lead to refined interpretations of existing evalu-
ation techniques. Lastly, we propose new ways
to quantify and visualize miscalibration in proba-
bilistic classification, including novel multidimen-
sional reliability diagrams.

Veoneer Inc. Uppsala University

machine learning research and applications concern build-
ing models with good predictive performance, the question
of how well the confidence score (expressed as a number be-
tween 0 and 1) of the predicted class is calibrated has been
dominating the model evaluation literature (Niculescu-Mizil
and Caruana 2005; Guo et al. 2017; Kumar, Sarawagi, and
Jain 2018). Put differently, it is whether the confidence score
of the predicted class can be interpreted as the probability
of the classifier getting the class right—a natural question in
many applications.

However, in a number of new, especially safety-critical, ap-
plications of machine learning it is of increasing impor-
tance to know whether the entire classifier output can be
interpreted probabilistically, not just the confidence of the
predicted class; this is the main question to be addressed
in this paper. We illustrate the need for a probabilistic in-
terpretation of the entire classifier output via a simplistic
yet illustrative example. Suppose we have a classification
problem in which given an image containing either a sin-
gle or no living entity a classifier outputs a probability vec-
tor expressing the likeliness of three different classes “no
creature”, “person”, and “animal”. Suppose that for
the same image the outputs of two different classifiers are
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Coverage

on what fraction of the data do the confidence
/ credible sets cover the true label?
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average size of the set Is measured as well,
since we want sets to be efficient




Fvaluating UQ

® Callbration: can the model forecast its own pertormance”

® Coverage: does the model meet the given error level?



V. Summary



® Types of Uncertainty

® Modeling Paradigms
® Frequentism: random data
® Bayesianism: random parameters

® Practical Methods
® Freguentism: use ‘extra’ data, possibly synthesized
® Bayesianism: reduce computation with local approximations

® Evaluation
® calibration: can the model forecast its own performance?
® coverage: does the model meet the tolerated level of error?
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Open Problems

® petter methods for Bayesian computations
® guarantees in the era of deep learning
® setting more informative Bayesian priors

® quantitying uncertainty in structured, multi-step,
or otherwise correlated tasks.



Thank You! Questions?



