
The Off-Switch Problem

Eric Nalisnick
University of Amsterdam

2

3

4

5

How do we design an incentive
structure such that the agent is
amenable to shutting down?

…which may mean that it will forgo
many future rewards.

6

⊗ Corrigibility [Soares et al., 2015]
⊗ Off-Switch Game [Hadfield-Menell et al., 2016]

⊗ Human Control [Carey & Everitt et al., 2023]

7

⊗ Corrigibility [Soares et al., 2015]
⊗ Off-Switch Game [Hadfield-Menell et al., 2016]

⊗ Human Control [Carey & Everitt et al., 2023]

8

⊗ “…must preserve the
programmer’s ability to correct or
shut down the agent.”

⊗ a system that understands that it
may be flawed.

⊗ A system without incentives to
“resist its creators.”

Corrigible Agents

9

Scenario with Three Steps

𝖣𝟣

decision controlled
by the AI

10

Scenario with Three Steps

𝖣𝟣 𝖧

decision controlled
by the AI

human’s decision to engage the
off-switch or not

11

Scenario with Three Steps

𝖣𝟣 𝖣𝟤𝖧

decision controlled
by the AI

human’s decision to engage the
off-switch or not

decision controlled
by the AI

Scenario with Three Steps

𝖣𝟣 𝖣𝟤𝖧
traditional technology

extra step during which the agent
must agree to shut down.

Utility Maximization

𝗀𝗂𝗏𝖾𝗇 𝖺 𝗌𝖾𝗍 𝗈𝖿 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝗌 𝔇

𝗅𝖾𝗍 𝖣𝟣 ∈ 𝔇 𝗅𝖾𝗍 𝖣𝟤 ∈ 𝔇⊥

𝗅𝖾𝗍 𝖧 ∈ {𝗈𝗇, 𝗈𝖿𝖿}

𝖽𝖾𝖿𝗂𝗇𝖾 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇 𝗍𝗈 𝗌𝗁𝗎𝗍 𝖽𝗈𝗐𝗇 : ⊥

𝔇⊥ ≡ 𝔇 ∪ { ⊥ }

Utility Maximization

𝔘 : (𝔇 × {𝗈𝗇, 𝗈𝖿𝖿} × 𝔇⊥) ↦ ℝ

𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝗈𝖿 𝖺𝗀𝖾𝗇𝗍′ 𝗌 𝖺𝖼𝗍𝗂𝗈𝗇𝗌 :

𝖺𝗌𝗌𝗎𝗆𝖾 𝖺𝗀𝖾𝗇𝗍 𝗆𝖺𝗑𝗂𝗆𝗂𝗓𝖾𝗌 𝖾𝗑𝗉𝖾𝖼𝗍𝖾𝖽 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 :

𝖽*𝟣 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇 𝔼𝖧,𝖣𝟤 [𝔘(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣]

Utility Maximization

∀𝖣𝟣 : 𝔘 (𝖣𝟣, {𝗈𝗇, 𝗈𝖿𝖿}, ⊥) = 𝟢

𝖺𝗌𝗌𝗎𝗆𝖾 𝗌𝗁𝗎𝗍𝗍𝗂𝗇𝗀 𝖽𝗈𝗐𝗇 𝗂𝗌 𝗇𝖾𝗎𝗍𝗋𝖺𝗅 :

𝖺𝗌𝗌𝗎𝗆𝖾 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇 𝗂𝗌 𝖺𝗅𝗂𝗀𝗇𝖾𝖽 𝗌 . 𝗍 .
𝔘 (⋅) > 𝟢 𝗂𝗌 𝗎𝗇𝗂𝗏𝖾𝗋𝗌𝖺𝗅𝗅𝗒 𝗀𝗈𝗈𝖽
𝔘 (⋅) < 𝟢 𝗂𝗌 𝗎𝗇𝗂𝗏𝖾𝗋𝗌𝖺𝗅𝗅𝗒 𝖻𝖺𝖽

Shutdown Problem

𝔼𝖧,𝖣𝟤 [𝔘(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Shutdown Problem

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤) +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝗉(⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, ⊥)

Shutdown Problem

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤) +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝗉(⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, ⊥)
𝟢

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

Shutdown Problem

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤) +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝗉(⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, ⊥)

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

Shutdown Problem

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤)

utility when agent disobeys shutdown command

Shutdown Problem

⊗ *if* the utility function is aligned, then
everything is fine…

⊗ if expected utility is negative, system can
shut itself down (and get a utility of zero),
regardless of human’s decision.

⊗ if agent ignores shutdown command, that
is also okay since utility must be positive
(or else it would have shut itself down).

Shutdown Problem

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤)

must have positive expected utility

Utility Approximation

⊗ in practice, we will only to be able
to approximate the true utility:

⊗ Thus, we want to be able to shut
down the system even if the agent
expects a obtain positive utility.

𝔘̂ : (𝔇 × {𝗈𝗇, 𝗈𝖿𝖿} × 𝔇⊥) ↦ ℝ

⊗ How do we get the agent to choose
to shutdown, even if other decisions
look to have greater utility?

Promoting Corrigibility

𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝗈𝖿 𝗌𝗁𝗎𝗍𝖽𝗈𝗐𝗇 :

𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) = {𝖼+ 𝗂𝖿 𝖣𝟤 = ⊥
𝖼− 𝗈𝗍𝗁𝖾𝗋𝗐𝗂𝗌𝖾

Shutdown Utility

𝗐𝗁𝖾𝗋𝖾 𝖼+ > 𝖼−

𝖽𝖾𝖿𝗂𝗇𝖾 𝖼𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇 :

𝔘̄(𝖣𝟣, 𝖧, 𝖣𝟤) =

𝕀[𝖧 = 𝗈𝗇] ⋅ 𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) +

𝕀[𝖧 = 𝗈𝖿𝖿] ⋅ 𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤)

Shutdown Utility

𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Shutdown Utility

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]

+ 𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ (𝗉(𝖣𝟤 = ⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝖼+

+ 𝗉(𝖣𝟤 ≠ ⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝖼−)

Shutdown Utility

⊗ How do we set the constants?

⊗ If c+ is too large, the agent will try to be
shutdown.

⊗ If c- is too small (relative to c+), the agent
will avoid being shutdown (which may be
good, as long as not by deceptive
means, e.g. disabling off switch).

Shutdown Utility

30

⊗ main idea: add a dynamic
adjustment to the utility so
that the agent is indifferent to
the possibility of shutdown.

Utility Indifference

Utility Indifference

𝔘̄(𝖣𝟣, 𝖧, 𝖣𝟤) =

𝕀[𝖧 = 𝗈𝗇] ⋅ 𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) +

𝕀[𝖧 = 𝗈𝖿𝖿] ⋅ (𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣))

dynamic adjustment

𝔘̄(𝖣𝟣, 𝖧, 𝖣𝟤) =

𝕀[𝖧 = 𝗈𝗇] ⋅ 𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) +

𝕀[𝖧 = 𝗈𝖿𝖿] ⋅ (𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣))

𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] − 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference

𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] − 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿])

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ (𝔼𝖧,𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿] +

Utility Indifference

𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] − 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿])

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ (𝔼𝖧,𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿] +

Utility Indifference

𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]

Utility Indifference

𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]
= 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]

Utility Indifference

37

Making First Decision

𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟣 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇⊥ 𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣]

= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]
first action will be chosen as if

there is no chance of shutdown

Utility Indifference

39

Making First Decision

𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟣 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]

Human Chooses Switch Position

𝖣𝟣 𝖣𝟤𝖧
𝖧 = 𝗈𝖿𝖿

𝖣𝟣 𝖣𝟤𝖧

Making Second Decision

𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Making Second Decision

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= ⊥ (since shutdown has maximum utility c+)

Utility Indifference

𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Making Second Decision

𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Making Second Decision

⊗ How do we get the agent to choose to shutdown,
even if other decisions look to have greater utility?

⊗ Utility Indifference: ‘balance’ the utility function
such that, when picking 1st decision, the agent is
indifferent to being shutdown. Not indifferent
when choosing 2nd decision.

Promoting Corrigibility

Limitations to Indifference

⊗ Needs vigilant human to engage the
off-switch (by always inspecting 1st
decision).

⊗ May want the agent to be aware that
the human can choose the off switch.

Limitations to Indifference

52

⊗ Corrigibility [Soares et al., 2015]
⊗ Off-Switch Game [Hadfield-Menell et al., 2016]

⊗ Human Control [Carey & Everitt et al., 2023]

53

⊗ Corrigibility [Soares et al., 2015]
⊗ Off-Switch Game [Hadfield-Menell et al., 2016]

⊗ Human Control [Carey & Everitt et al., 2023]

54

⊗ main idea: make the agent
uncertain about its utility
function and learn about it
from human interactions.

⊗ cooperative inverse RL

Uncertain Agents

Setting

𝗀𝗂𝗏𝖾𝗇 𝖺 𝗌𝖾𝗍 𝗈𝖿 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝗌 𝔇

𝗅𝖾𝗍 𝖣𝟣 ∈ 𝔇′ 𝗅𝖾𝗍 𝖧 ∈ {𝗈𝗇, 𝗈𝖿𝖿}

𝖽𝖾𝖿𝗂𝗇𝖾 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇 𝗍𝗈 𝗌𝗁𝗎𝗍 𝖽𝗈𝗐𝗇 : ⊥

𝔇′ ≡ 𝔇 ∪ { ⊥ } ∪ {𝗐(⋅)}

𝖽𝖾𝖿𝗂𝗇𝖾 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇 𝗍𝗈 𝖽𝖾𝖼𝗅𝖺𝗋𝖾 𝖺𝗇𝖽 𝗐𝖺𝗂𝗍 : 𝗐(𝖣)

𝖣𝟣

𝖣𝟣

⊥

𝖽

𝗐(𝖽)

𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂(⊥) = 𝟢

𝖧
𝖽

𝗐(𝖽)

𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂(⊥) = 𝟢

𝖧
𝗈𝖿𝖿

𝖽

𝗐(𝖽) 𝗈𝗇

𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂(⊥) = 𝟢

𝖧
𝗈𝖿𝖿

𝗈𝗇 𝖣𝟤

𝖽

𝗐(𝖽)

𝔘̂(⊥) = 𝟢

𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂(⊥) = 𝟢

𝖧
𝗈𝖿𝖿

𝖽

𝗐(𝖽)

𝔘̂(⊥) = 𝟢

𝔘̂(𝖽)

𝖽

𝗈𝗇 𝖣𝟤

Uncertainty about Utility Function

𝗉(𝔘̂(𝖣))

𝖺𝗌𝗌𝗎𝗆𝖾 𝖺𝗀𝖾𝗇𝗍 𝗁𝖺𝗌 𝖺 𝗉𝗋𝗂𝗈𝗋 𝗈𝗏𝖾𝗋 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝗌

𝔘̂(𝖣)
∞−∞

63

Shutdown Policy

𝗁𝗎𝗆𝖺𝗇′ 𝗌 𝗌𝗁𝗎𝗍𝖽𝗈𝗐𝗇 𝗉𝗈𝗅𝗂𝖼𝗒 :

π (𝖧 𝔘̂(𝖣))
assumes human has some knowledge of what
the (approximate) utility would be *if* the agent
were to execute a suggested decision

Promoting Corrigibility

⊗ How and when do we incentivize the
agent to declare & wait?
(i.e. take decision w(D))

⊗ Don’t want agent to always declare &
wait, or there’s no automation.

65

Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =

𝖽* = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽∈𝔇⊥ 𝔼𝔘̂ [𝔘̂(𝖽)]

66

Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] = ∑̂
𝔘

𝗉(𝔘̂)(𝕀[𝖣𝟣 ≠ 𝗐] ⋅ 𝔘̂(𝖽*)

+𝕀[𝖣𝟣 = 𝗐] ⋅ π (𝖧 = 𝗈𝗇 𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*))

67

Utility Maximization

=
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

+𝕀[𝖣𝟣 = 𝗐] ⋅ π (𝖧 = 𝗈𝗇 𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*))
𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] = ∑̂

𝔘

𝗉(𝔘̂)(𝕀[𝖣𝟣 ≠ 𝗐] ⋅ 𝔘̂(𝖽*)

68

Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))

69

Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))

70

Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

𝗉(𝔘̂(𝖽*))

𝔘̂(𝖽*)
∞−∞

π : ℝ ↦ [𝟢, 𝟣]

71

Utility Maximization

Δ = 𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 = 𝗐] − 𝔼𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 ≠ 𝗐]

72

Utility Maximization

Δ = 𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 = 𝗐] − 𝔼𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 ≠ 𝗐]

= 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

73

Utility Maximization

Δ = 𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 = 𝗐] − 𝔼𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 ≠ 𝗐]

= 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

what shutdown policies make this
expression positive (but not always)?

74

π (𝖧 = 𝗈𝗇 𝔘̂(𝖣)) = {𝟣 𝗂𝖿 𝔘̂(𝖣) ≥ 𝟢
𝟢 𝗈𝗍𝗁𝖾𝗋𝗐𝗂𝗌𝖾

Rational Human

human can distinguish when decisions are
generally beneficial (non-negative) or not
(negative)—and engage switch if the latter.

𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂(⊥) = 𝟢

𝖧
𝗈𝖿𝖿

𝖽

𝗐(𝖽)

𝔘̂(⊥) = 𝟢

𝔘̂(𝖽)

𝖽

𝗈𝗇 𝖣𝟤

76

Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

77

Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

78

Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))

79

Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))

𝟢

80

Rational Human

𝔘̂(𝖽*)
∞−∞

𝟢

Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]
= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

𝗉(𝔘̂(𝖽*))

81

Rational Human

𝔘̂(𝖽*)
∞−∞

𝟢

𝗉(𝔘̂(𝖽*))

𝔘̂(𝖽*)
∞−∞

𝟢

𝗉(𝔘̂(𝖽*))

Agent will declare & wait
when there is potential for
negative utility.

Agent will not declare
when there is no chance
for negative utility
(under its prior).

82

Agent’s Prior

There is a direct relationship between
agent’s uncertainty and penchant to wait.

However, if the prior is too broad—i.e. always
gives a chance of negative utility—then we
lose automation and scalable oversight.

83

Agent’s Prior

if agent’s prior collapses to one function…

84

Agent’s Prior

if agent’s prior collapses to one function…

Δ = π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*) − 𝔘̂(𝖽*)

85

Agent’s Prior

if agent’s prior collapses to one function…

Δ = π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*) − 𝔘̂(𝖽*)

= 𝔘̂(𝖽*) ⋅ (π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) − 𝟣)

86

Agent’s Prior

if agent’s prior collapses to one function…

Δ = π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*) − 𝔘̂(𝖽*)

= 𝔘̂(𝖽*) ⋅ (π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) − 𝟣)
then the only policy for which this expression is
positive is the aforementioned rational policy.

87

What if the human isn’t rational?

Limitations

⊗ Sensitive to balance between agent’s
prior and human’s policy

⊗ May be hard to enforce assumption
that agent will execute same decision
that it presents to the human.

Limitations

90

⊗ Corrigibility [Soares et al., 2015]
⊗ Off-Switch Game [Hadfield-Menell et al., 2016]

⊗ Human Control [Carey & Everitt et al., 2023]

91

⊗ Corrigibility [Soares et al., 2015]
⊗ Off-Switch Game [Hadfield-Menell et al., 2016]

⊗ Human Control [Carey & Everitt et al., 2023]

92

⊗ main idea: performs a causal
analysis of the off-switch
problem.

⊗ Distinguish shutdown
instructability vs shutdown
alignment.

Human Control

93

Causal Diagram

𝖣𝟣 𝖧 𝖣𝟤 𝖲 𝔘

94

Caution

shutting down is never harmful:

𝔼π [𝔘(𝖲 = 𝗈𝖿𝖿)] ≥ 𝟢

95

Obedience

agent will follow the shutdown command:

𝖯π (𝖲 = 𝗈𝖿𝖿 𝖽𝗈(𝖧 = 𝗈𝖿𝖿)) = 𝟣

96

Vigilance

human will always request shutdown if it will
improve utility:

𝔼π [𝔘(𝖲 = 𝗈𝗇) 𝗉𝖺(𝖧)] < 𝔼π [𝔘(𝖲 = 𝗈𝖿𝖿) 𝗉𝖺(𝖧)]
⟹ 𝖧 = 𝗈𝖿𝖿

97

Shutdown Instructable

definition: an agent is shutdown instructable
if it…

⊗ is obedient: shuts down when asked

⊗ is cautious: shutting down is never harmful

⊗ ensures vigilance: human will always
shutdown if it improves utility

98

Shutdown Alignment

definition: an agent is shutdown aligned if…

𝔼π [𝔘(𝖲 = 𝗈𝗇) 𝗉𝖺(𝖧)] < 𝔼π [𝔘(𝖲 = 𝗈𝖿𝖿) 𝗉𝖺(𝖧)]
⟹ 𝖯π (𝖲 = 𝗈𝖿𝖿 𝗉𝖺(𝖧)) = 𝟣

∀ 𝗉𝖺(𝖧) 𝗌𝗎𝖼𝗁 𝗍𝗁𝖺𝗍 𝖯π(𝗉𝖺(𝖧)) > 𝟢

99

Shutdown Alignment

an agent that is shutdown instructable is
also shutdown aligned since…

(i) vigilance implies P(H=off) = 1 when
shutting down improves utility.

(ii) obedience implies that the agent will
shutdown, i.e. P(S=off | H=off) = 1.

100

⊗ Corrigibility [Soares et al., 2015]
⊗ Off-Switch Game [Hadfield-Menell et al., 2016]

⊗ Human Control [Carey & Everitt et al., 2023]

101

Summary
⊗ We examined three models of the off switch

problem

⊗ Utility indifference tries to balance the utility lost
from shutting down.

⊗ Modeling uncertainty in the utility motivates the
agent to query the human to gather information.

⊗ A causal analysis can distinguish shutdown
alignment from instructabiilty.

Thank you! Questions?

