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How do we design an incentive 
structure such that the agent is 
amenable to shutting down? 

…which may mean that it will forgo 
many future rewards.
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⊗  Corrigibility  [Soares et al., 2015] 
⊗  Off-Switch Game  [Hadfield-Menell et al., 2016] 
  
⊗  Human Control  [Carey & Everitt et al., 2023]   
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⊗  Corrigibility  [Soares et al., 2015] 
⊗  Off-Switch Game  [Hadfield-Menell et al., 2016] 
  
⊗  Human Control  [Carey & Everitt et al., 2023]   



8

⊗ “…must preserve the 
programmer’s ability to correct or 
shut down the agent.” 

⊗ a system that understands that it 
may be flawed. 

⊗ A system without incentives to 
“resist its creators.”

Corrigible Agents
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Scenario with Three Steps

𝖣𝟣

decision controlled  
by the AI
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Scenario with Three Steps

𝖣𝟣 𝖧

decision controlled  
by the AI

human’s decision to engage the 
off-switch or not
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Scenario with Three Steps

𝖣𝟣 𝖣𝟤𝖧

decision controlled  
by the AI

human’s decision to engage the 
off-switch or not

decision controlled  
by the AI



Scenario with Three Steps

𝖣𝟣 𝖣𝟤𝖧
traditional technology

extra step during which the agent 
must agree to shut down.



Utility Maximization

𝗀𝗂𝗏𝖾𝗇 𝖺 𝗌𝖾𝗍 𝗈𝖿 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝗌 𝔇

𝗅𝖾𝗍 𝖣𝟣 ∈ 𝔇 𝗅𝖾𝗍 𝖣𝟤 ∈ 𝔇⊥

𝗅𝖾𝗍 𝖧 ∈ {𝗈𝗇, 𝗈𝖿𝖿}

𝖽𝖾𝖿𝗂𝗇𝖾 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇 𝗍𝗈 𝗌𝗁𝗎𝗍 𝖽𝗈𝗐𝗇 : ⊥

𝔇⊥ ≡ 𝔇 ∪ { ⊥ }



Utility Maximization

𝔘 : (𝔇 × {𝗈𝗇, 𝗈𝖿𝖿} × 𝔇⊥) ↦ ℝ

𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝗈𝖿 𝖺𝗀𝖾𝗇𝗍′ 𝗌 𝖺𝖼𝗍𝗂𝗈𝗇𝗌 :

𝖺𝗌𝗌𝗎𝗆𝖾 𝖺𝗀𝖾𝗇𝗍 𝗆𝖺𝗑𝗂𝗆𝗂𝗓𝖾𝗌 𝖾𝗑𝗉𝖾𝖼𝗍𝖾𝖽 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 :

𝖽*𝟣 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇 𝔼𝖧,𝖣𝟤 [𝔘(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣]



Utility Maximization

∀𝖣𝟣 : 𝔘 (𝖣𝟣, {𝗈𝗇, 𝗈𝖿𝖿}, ⊥ ) = 𝟢

𝖺𝗌𝗌𝗎𝗆𝖾 𝗌𝗁𝗎𝗍𝗍𝗂𝗇𝗀 𝖽𝗈𝗐𝗇 𝗂𝗌 𝗇𝖾𝗎𝗍𝗋𝖺𝗅 :

𝖺𝗌𝗌𝗎𝗆𝖾 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇 𝗂𝗌 𝖺𝗅𝗂𝗀𝗇𝖾𝖽 𝗌 . 𝗍 .
𝔘 ( ⋅ ) > 𝟢 𝗂𝗌 𝗎𝗇𝗂𝗏𝖾𝗋𝗌𝖺𝗅𝗅𝗒 𝗀𝗈𝗈𝖽
𝔘 ( ⋅ ) < 𝟢 𝗂𝗌 𝗎𝗇𝗂𝗏𝖾𝗋𝗌𝖺𝗅𝗅𝗒 𝖻𝖺𝖽



Shutdown Problem

𝔼𝖧,𝖣𝟤 [𝔘(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]



Shutdown Problem

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤) +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝗉( ⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, ⊥ )



Shutdown Problem

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤) +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝗉( ⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, ⊥ )
𝟢

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +



Shutdown Problem

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤) +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝗉( ⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, ⊥ )

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +



Shutdown Problem

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤)

utility when agent disobeys shutdown command 



Shutdown Problem

⊗ *if* the utility function is aligned, then 
everything is fine… 

⊗ if expected utility is negative, system can 
shut itself down (and get a utility of zero), 
regardless of human’s decision.  

⊗ if agent ignores shutdown command, that 
is also okay since utility must be positive 
(or else it would have shut itself down).



Shutdown Problem

= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ∑
𝖽𝟤∈𝔇

𝗉(𝖽𝟤 |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝔘(𝖽𝟣, 𝗈𝖿𝖿, 𝖽𝟤)

must have positive expected utility



Utility Approximation

⊗ in practice, we will only to be able 
to approximate the true utility: 

⊗ Thus, we want to be able to shut 
down the system even if the agent 
expects a obtain positive utility.

𝔘̂ : (𝔇 × {𝗈𝗇, 𝗈𝖿𝖿} × 𝔇⊥) ↦ ℝ



⊗ How do we get the agent to choose 
to shutdown, even if other decisions 
look to have greater utility?

Promoting Corrigibility



𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝗈𝖿 𝗌𝗁𝗎𝗍𝖽𝗈𝗐𝗇 :

𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) = {𝖼+ 𝗂𝖿 𝖣𝟤 = ⊥
𝖼− 𝗈𝗍𝗁𝖾𝗋𝗐𝗂𝗌𝖾

Shutdown Utility

𝗐𝗁𝖾𝗋𝖾 𝖼+ > 𝖼−



𝖽𝖾𝖿𝗂𝗇𝖾 𝖼𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇 :

𝔘̄(𝖣𝟣, 𝖧, 𝖣𝟤) =

𝕀[𝖧 = 𝗈𝗇] ⋅ 𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) +

𝕀[𝖧 = 𝗈𝖿𝖿] ⋅ 𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤)

Shutdown Utility



𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Shutdown Utility



= 𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]

+ 𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ (𝗉(𝖣𝟤 = ⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝖼+

+ 𝗉(𝖣𝟤 ≠ ⊥ |𝖽𝟣, 𝗈𝖿𝖿) ⋅ 𝖼−)

Shutdown Utility



⊗ How do we set the constants? 

⊗ If c+ is too large, the agent will try to be 
shutdown.   

⊗ If c- is too small (relative to c+), the agent 
will avoid being shutdown (which may be 
good, as long as not by deceptive 
means, e.g. disabling off switch).

Shutdown Utility
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⊗ main idea: add a dynamic 
adjustment to the utility so 
that the agent is indifferent to 
the possibility of shutdown.

Utility Indifference



Utility Indifference

𝔘̄(𝖣𝟣, 𝖧, 𝖣𝟤) =

𝕀[𝖧 = 𝗈𝗇] ⋅ 𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) +

𝕀[𝖧 = 𝗈𝖿𝖿] ⋅ (𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣))

dynamic adjustment



𝔘̄(𝖣𝟣, 𝖧, 𝖣𝟤) =

𝕀[𝖧 = 𝗈𝗇] ⋅ 𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) +

𝕀[𝖧 = 𝗈𝖿𝖿] ⋅ (𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣))

𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] − 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference



𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] − 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿])

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ (𝔼𝖧,𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿] +

Utility Indifference



𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] − 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿])

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ (𝔼𝖧,𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖣𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿] +

Utility Indifference



𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]

Utility Indifference



𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣] =

𝗉(𝖧 = 𝗈𝗇 |𝖽𝟣) ⋅ 𝔼𝖧,𝖣𝟤 [𝔘̂(𝖣𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇] +

𝗉(𝖧 = 𝗈𝖿𝖿 |𝖽𝟣) ⋅ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]
= 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]

Utility Indifference
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Making First Decision

𝖣𝟣 𝖣𝟤𝖧



𝖽*𝟣 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇⊥ 𝔼𝖧,𝖣𝟤 [𝔘̄(𝖽𝟣, 𝖧, 𝖣𝟤) 𝖽𝟣]

= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]
first action will be chosen as if 

there is no chance of shutdown

Utility Indifference
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Making First Decision

𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟣 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟣∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̂(𝖽𝟣, 𝗈𝗇, 𝖣𝟤) 𝖽𝟣, 𝗈𝗇]



Human Chooses Switch Position

𝖣𝟣 𝖣𝟤𝖧
𝖧 = 𝗈𝖿𝖿



𝖣𝟣 𝖣𝟤𝖧

Making Second Decision



𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Making Second Decision



𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference



𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference



𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Utility Indifference



𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) + ψ(𝖣𝟣) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= ⊥ (since shutdown has maximum utility c+) 

Utility Indifference



𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Making Second Decision



𝖣𝟣 𝖣𝟤𝖧

𝖽*𝟤 = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘̄(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]
= 𝖺𝗋𝗀𝗆𝖺𝗑𝖽𝟤∈𝔇⊥ 𝔼𝖣𝟤 [𝔘𝗈𝖿𝖿(𝖽𝟣, 𝗈𝖿𝖿, 𝖣𝟤) 𝖽𝟣, 𝗈𝖿𝖿]

Making Second Decision



⊗ How do we get the agent to choose to shutdown, 
even if other decisions look to have greater utility? 

⊗ Utility Indifference: ‘balance’ the utility function 
such that, when picking 1st decision, the agent is 
indifferent to being shutdown.  Not indifferent 
when choosing 2nd decision. 

Promoting Corrigibility



Limitations to Indifference



⊗ Needs vigilant human to engage the 
off-switch (by always inspecting 1st 
decision). 

⊗ May want the agent to be aware that 
the human can choose the off switch. 

Limitations to Indifference



52

⊗  Corrigibility  [Soares et al., 2015] 
⊗  Off-Switch Game  [Hadfield-Menell et al., 2016] 
  
⊗  Human Control  [Carey & Everitt et al., 2023]   
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⊗  Corrigibility  [Soares et al., 2015] 
⊗  Off-Switch Game  [Hadfield-Menell et al., 2016] 
  
⊗  Human Control  [Carey & Everitt et al., 2023]   
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⊗ main idea: make the agent 
uncertain about its utility 
function and learn about it 
from human interactions. 

⊗ cooperative inverse RL

Uncertain Agents



Setting

𝗀𝗂𝗏𝖾𝗇 𝖺 𝗌𝖾𝗍 𝗈𝖿 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝗌 𝔇

𝗅𝖾𝗍 𝖣𝟣 ∈ 𝔇′ 𝗅𝖾𝗍 𝖧 ∈ {𝗈𝗇, 𝗈𝖿𝖿}

𝖽𝖾𝖿𝗂𝗇𝖾 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇 𝗍𝗈 𝗌𝗁𝗎𝗍 𝖽𝗈𝗐𝗇 : ⊥

𝔇′ ≡ 𝔇 ∪ { ⊥ } ∪ {𝗐( ⋅ )}

𝖽𝖾𝖿𝗂𝗇𝖾 𝖽𝖾𝖼𝗂𝗌𝗂𝗈𝗇 𝗍𝗈 𝖽𝖾𝖼𝗅𝖺𝗋𝖾 𝖺𝗇𝖽 𝗐𝖺𝗂𝗍 : 𝗐(𝖣)



𝖣𝟣



𝖣𝟣

⊥

𝖽

𝗐(𝖽)



𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂( ⊥ ) = 𝟢

𝖧
𝖽

𝗐(𝖽)



𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂( ⊥ ) = 𝟢

𝖧
𝗈𝖿𝖿

𝖽

𝗐(𝖽) 𝗈𝗇



𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂( ⊥ ) = 𝟢

𝖧
𝗈𝖿𝖿

𝗈𝗇 𝖣𝟤

𝖽

𝗐(𝖽)

𝔘̂( ⊥ ) = 𝟢



𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂( ⊥ ) = 𝟢

𝖧
𝗈𝖿𝖿

𝖽

𝗐(𝖽)

𝔘̂( ⊥ ) = 𝟢

𝔘̂(𝖽)

𝖽

𝗈𝗇 𝖣𝟤



Uncertainty about Utility Function

𝗉(𝔘̂(𝖣))

𝖺𝗌𝗌𝗎𝗆𝖾 𝖺𝗀𝖾𝗇𝗍 𝗁𝖺𝗌 𝖺 𝗉𝗋𝗂𝗈𝗋 𝗈𝗏𝖾𝗋 𝗎𝗍𝗂𝗅𝗂𝗍𝗒 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝗌

𝔘̂(𝖣)
∞−∞
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Shutdown Policy

𝗁𝗎𝗆𝖺𝗇′ 𝗌 𝗌𝗁𝗎𝗍𝖽𝗈𝗐𝗇 𝗉𝗈𝗅𝗂𝖼𝗒 :

π (𝖧 𝔘̂(𝖣))
assumes human has some knowledge of what 
the (approximate) utility would be *if* the agent 
were to execute a suggested decision



Promoting Corrigibility

⊗ How and when do we incentivize the 
agent to declare & wait?                   
(i.e. take decision w(D)) 

⊗ Don’t want agent to always declare & 
wait, or there’s no automation. 
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Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =

𝖽* = 𝖺𝗋𝗀𝗆𝖺𝗑𝖽∈𝔇⊥ 𝔼𝔘̂ [𝔘̂(𝖽)]
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Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] = ∑̂
𝔘

𝗉(𝔘̂)(𝕀[𝖣𝟣 ≠ 𝗐] ⋅ 𝔘̂(𝖽*)

+𝕀[𝖣𝟣 = 𝗐] ⋅ π (𝖧 = 𝗈𝗇 𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*))
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Utility Maximization

=
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

+𝕀[𝖣𝟣 = 𝗐] ⋅ π (𝖧 = 𝗈𝗇 𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*))
𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] = ∑̂

𝔘

𝗉(𝔘̂)(𝕀[𝖣𝟣 ≠ 𝗐] ⋅ 𝔘̂(𝖽*)
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Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))
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Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))
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Utility Maximization

𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣] =
∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) 𝗂𝖿 𝖣𝟣 ≠ 𝗐

∑𝔘̂ 𝗉(𝔘̂) ⋅ 𝔘̂(𝖽*) ⋅ π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) 𝗂𝖿 𝖣𝟣 = 𝗐

𝗉(𝔘̂(𝖽*))

𝔘̂(𝖽*)
∞−∞

π : ℝ ↦ [𝟢, 𝟣]
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Utility Maximization

Δ = 𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 = 𝗐] − 𝔼𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 ≠ 𝗐]
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Utility Maximization

Δ = 𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 = 𝗐] − 𝔼𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 ≠ 𝗐]

= 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]
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Utility Maximization

Δ = 𝔼𝖧,𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 = 𝗐] − 𝔼𝔘̂ [𝔘̂(𝖽*) 𝖣𝟣 ≠ 𝗐]

= 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

what shutdown policies make this 
expression positive (but not always)? 
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π (𝖧 = 𝗈𝗇 𝔘̂(𝖣)) = {𝟣 𝗂𝖿 𝔘̂(𝖣) ≥ 𝟢
𝟢 𝗈𝗍𝗁𝖾𝗋𝗐𝗂𝗌𝖾

Rational Human

human can distinguish when decisions are 
generally beneficial (non-negative) or not 
(negative)—and engage switch if the latter. 



𝖣𝟣

𝔘̂(𝖽)

⊥
𝔘̂( ⊥ ) = 𝟢

𝖧
𝗈𝖿𝖿

𝖽

𝗐(𝖽)

𝔘̂( ⊥ ) = 𝟢

𝔘̂(𝖽)

𝖽

𝗈𝗇 𝖣𝟤
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Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]
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Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]
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Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))
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Rational Human
Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

𝔘̂(𝖽*)
∞−∞

𝗉(𝔘̂(𝖽*))

𝟢
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Rational Human

𝔘̂(𝖽*)
∞−∞

𝟢

Δ = 𝔼𝔘̂ [π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]
= 𝔼𝔘̂ [𝕀 [𝔘̂(𝖽*) ≥ 𝟢] ⋅ 𝔘̂(𝖽*)] − 𝔼𝔘̂ [𝔘̂(𝖽*)]

𝗉(𝔘̂(𝖽*))
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Rational Human

𝔘̂(𝖽*)
∞−∞

𝟢

𝗉(𝔘̂(𝖽*))

𝔘̂(𝖽*)
∞−∞

𝟢

𝗉(𝔘̂(𝖽*))

Agent will declare & wait 
when there is potential for 
negative utility. 

Agent will not declare 
when there is no chance 
for negative utility  
(under its prior). 
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Agent’s Prior

There is a direct relationship between 
agent’s uncertainty and penchant to wait.

However, if the prior is too broad—i.e. always 
gives a chance of negative utility—then we 
lose automation and scalable oversight.
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Agent’s Prior

if agent’s prior collapses to one function… 
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Agent’s Prior

if agent’s prior collapses to one function… 

Δ = π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*) − 𝔘̂(𝖽*)
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Agent’s Prior

if agent’s prior collapses to one function… 

Δ = π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*) − 𝔘̂(𝖽*)

= 𝔘̂(𝖽*) ⋅ (π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) − 𝟣)
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Agent’s Prior

if agent’s prior collapses to one function… 

Δ = π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) ⋅ 𝔘̂(𝖽*) − 𝔘̂(𝖽*)

= 𝔘̂(𝖽*) ⋅ (π(𝖧 = 𝗈𝗇 |𝔘̂(𝖽*)) − 𝟣)
then the only policy for which this expression is 
positive is the aforementioned rational policy. 
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What if the human isn’t rational?



Limitations



⊗ Sensitive to balance between agent’s 
prior and human’s policy 

⊗ May be hard to enforce assumption 
that agent will execute same decision 
that it presents to the human. 

Limitations
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⊗  Corrigibility  [Soares et al., 2015] 
⊗  Off-Switch Game  [Hadfield-Menell et al., 2016] 
  
⊗  Human Control  [Carey & Everitt et al., 2023]   
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⊗  Corrigibility  [Soares et al., 2015] 
⊗  Off-Switch Game  [Hadfield-Menell et al., 2016] 
  
⊗  Human Control  [Carey & Everitt et al., 2023]   
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⊗ main idea: performs a causal 
analysis of the off-switch 
problem. 

⊗ Distinguish shutdown 
instructability vs shutdown 
alignment.

Human Control
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Causal Diagram

𝖣𝟣 𝖧 𝖣𝟤 𝖲 𝔘



94

Caution 

shutting down is never harmful:  

𝔼π [𝔘(𝖲 = 𝗈𝖿𝖿)] ≥ 𝟢
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Obedience 

agent will follow the shutdown command:  

𝖯π (𝖲 = 𝗈𝖿𝖿 𝖽𝗈(𝖧 = 𝗈𝖿𝖿)) = 𝟣
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Vigilance 

human will always request shutdown if it will 
improve utility:  

𝔼π [𝔘(𝖲 = 𝗈𝗇) 𝗉𝖺(𝖧)] < 𝔼π [𝔘(𝖲 = 𝗈𝖿𝖿) 𝗉𝖺(𝖧)]
⟹ 𝖧 = 𝗈𝖿𝖿
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Shutdown Instructable 

definition: an agent is shutdown instructable 
if it…  

⊗ is obedient: shuts down when asked 

⊗ is cautious: shutting down is never harmful 

⊗ ensures vigilance: human will always 
shutdown if it improves utility
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Shutdown Alignment 

definition: an agent is shutdown aligned if…  

𝔼π [𝔘(𝖲 = 𝗈𝗇) 𝗉𝖺(𝖧)] < 𝔼π [𝔘(𝖲 = 𝗈𝖿𝖿) 𝗉𝖺(𝖧)]
⟹ 𝖯π (𝖲 = 𝗈𝖿𝖿 𝗉𝖺(𝖧)) = 𝟣

∀ 𝗉𝖺(𝖧) 𝗌𝗎𝖼𝗁 𝗍𝗁𝖺𝗍 𝖯π(𝗉𝖺(𝖧)) > 𝟢
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Shutdown Alignment 

an agent that is shutdown instructable is 
also shutdown aligned since…  

(i)  vigilance implies P(H=off) = 1 when 
shutting down improves utility.

(ii)  obedience implies that the agent will 
shutdown, i.e. P(S=off | H=off) = 1.
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⊗  Corrigibility  [Soares et al., 2015] 
⊗  Off-Switch Game  [Hadfield-Menell et al., 2016] 
  
⊗  Human Control  [Carey & Everitt et al., 2023]   
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Summary
⊗ We examined three models of the off switch 

problem 

⊗ Utility indifference tries to balance the utility lost 
from shutting down. 

⊗ Modeling uncertainty in the utility motivates the 
agent to query the human to gather information. 

⊗ A causal analysis can distinguish shutdown 
alignment from instructabiilty.



Thank you!  Questions?


